ﻻ يوجد ملخص باللغة العربية
We investigated the electronic response of the quasi-two-dimensional spin gap compound La4Ru2O10 using optical spectroscopy. We observed drastic changes in the optical spectra as the temperature decreased, resulting in anisotropy in the electronic structure of the spin-singlet ground state. Using the orbital-dependent hopping analysis, we found that orbital ordering plays a crucial role in forming the spin gap state in the non-one-dimensional material.
We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and transmission electron microscopy (TEM) studies on the quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for the J1-J2 model on
We have studied the electronic structure of the two-dimensional Heisenberg antiferromagnet VOCl using photoemission spectroscopy and density functional theory including local Coulomb repulsion. From calculated exchange integrals and the observed ener
The photoconductivity spectra of NbS_3 (phase I) crystals are studied. A drop of photoconductivity corresponding to the Peierls gap edge is observed. Reproducible spectral features are found at energies smaller the energy gap value. The first one is
Calcium vanadate CaV$_2$O$_4$ has a crystal structure of quasi-one-dimensional zigzag chains composed of orbital-active V$^{3+}$ ions and undergoes successive structural and antiferromagnetic phase transitions at $T_ssim 140$ K and $T_N sim 70$ K, re
The electronic states near the Fermi level of recently discovered superconductor Ba$_2$CuO$_{4-delta}$ consist primarily of the Cu $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals. We investigate the electronic correlation effect and the orbital polarizatio