ترغب بنشر مسار تعليمي؟ اضغط هنا

V-type asteroids in the middle Main Belt

244   0   0.0 ( 0 )
 نشر من قبل Fernando Roig
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of the first V-type asteroid in the middle belt, (21238) 1995WV7, located at ~2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ~2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by drifting in semi-major axis due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability of an asteroid of given diameter D to evolve from the Vesta family and to cross over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability of having evolved through this mechanism due to its large size (~5 km). However, the mechanism might explain the orbit of smaller bodies like (40521) 1999RL95 (~3 km), provided that we assume that the Vesta family formed > 3.5 Gy ago. We estimate that about 10% or more of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 90% must have a different origin.



قيم البحث

اقرأ أيضاً

We have observed the lightcurves of 13 V-type asteroids ((1933) Tinchen, (2011) Veteraniya, (2508) Alupka, (3657) Ermolova, (3900) Knezevic, (4005) Dyagilev, (4383) Suruga, (4434) Nikulin, (4796) Lewis, (6331) 1992 $mathrm{FZ_{1}}$, (8645) 1998 TN, ( 10285) Renemichelsen, and (10320) Reiland). Using these observations we determined the rotational rates of the asteroids, with the exception of Nikulin and Renemichelsen. The distribution of rotational rates of 59 V-type asteroids in the inner main belt, including 29 members of the Vesta family that are regarded as ejecta from the asteroid (4) Vesta, is inconsistent with the best-fit Maxwellian distribution. This inconsistency may be due to the effect of thermal radiation Yarkovsky--OKeefe--Radzievskii--Paddack (YORP) torques, and implies that the collision event that formed V-type asteroids is sub-billion to several billion years in age.
149 - L. Molnar , A. Pal , K. Sarneczky 2017
We present the K2 light curves of a large sample of untargeted Main Belt asteroids (MBAs) detected with the Kepler space telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with low stellar backgr ound designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility to obtain precise, uninterrupted light curves of a large number of MBAs and thus to determine unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations indicating that the latter are biased towards shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.
We present the observational results of a survey designed to target and detect asteroids whose colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates w ere selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System (a < 2.0 AU) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt (2.5 < a < 2.8). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ~100 differentiated parent bodies represented in meteorite collections have been battered to bits [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Mantle material in the Main Belt: Battered to bits? Met. & Planet. Sci. 31, 607].
We present new photometric observations for twelve asteroids ((122) Gerda, (152) Atala, (260) Huberta, (665) Sabine, (692) Hippodamia, (723) Hammonia, (745) Mauritia, (768) Struveana, (863) Benkoela, (1113) Katja, (1175) Margo, (2057) Rosemary) from the outer part of the main belt aimed to obtain the magnitude-phase curves and to verify geometric albedo and taxonomic class based on their magnitude-phase behaviors. The measured magnitude-phase relations confirm previously determined composition types of (260) Huberta (C-type), (692) Hippodamia (S-type) and (1175) Margo (S-type). Asteroids (665) Sabine and (768) Struveana previously classified as X-type show phase-curve behavior typical for moderate-albedo asteroids and may belong to the M-type. The phase-curve of (723) Hammonia is typical for the S-type which contradicts the previously determined C-type. We confirmed the moderate-albedo of asteroids (122) Gerda and (152) Atala, but their phase-curves are different from typical for the S-type and may indicate more rare compositional types. Based on magnitude-phase behaviors and V-R colors, (2057) Rosemary most probably belongs to M-type, while asteroids (745) Mauritia and (1113) Katja belong to S-complex. The phase curve of the A-type asteroid (863) Benkoela does not cover the opposition effect range and further observations are needed to understand typical features of the phase-curves of A-type asteroids in comparison with other types. We have also determined lightcurve amplitudes of the observed asteroids and obtained new or improved values of the rotation periods for most of them.
Unlike NASAs original Kepler Discovery Mission, the renewed K2 Mission will stare at the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large nu mber of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effect of apparent minor planet encounters. Here we investigate the effects of asteroid encounters on photometric precision using a sub-sample of the K2 Engineering data taken in February, 2014. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission, that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا