ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation and stellar populations across nuclear rings in galaxies

195   0   0.0 ( 0 )
 نشر من قبل Sarzi Marc
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present a study of the optical spectra of a sample of eight star-forming nuclear rings and the nuclei of their host galaxies. The spectra were obtained with the ISIS spectrograph on the William Herschel Telescope and cover a wide range in wavelength, enabling the measurement of several stellar absorption features and gas emission lines. We compared the strength of the absorption lines to a variety of population synthesis models for the star-formation history in the nuclear rings, including also the contribution of the older bulge and disc stellar components. We find that the stars in our sample of nuclear rings have most likely formed over a prolonged period of time characterised by episodic bursts of star-formation activity. Constant star formation is firmly ruled out by the data, whereas a one-off formation event is an unlikely explanation for a common galactic component such as nuclear rings. We have used emission-line measurements to constrain the physical conditions of the ionised gas within the rings. Emission in all nuclear rings originates from HII-regions with electron densities typical for these kinds of objects, and that the rings are characterised by values for the gas metallicity ranging from slightly below to just above solar. As 20% of nearby spiral galaxies hosts nuclear rings that are currently forming massive stars, our finding of an episodic star formation history in nuclear rings implies that a significant population remains to be identified of young nuclear rings that are not currently in a massive star formation phase.



قيم البحث

اقرأ أيضاً

Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about a half of the bar growth time, suggesting that the bar potential alone is unlikely responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.
The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between $2$ and $8times10^9~{rm M_{odot}}$ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than $10$ Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than $100$ Myr are present in at least two nuclei: NGC 247 and NGC 7793, with some evidence for young star formation in NGC 300s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from $sim-1.5$ dex more than $10$ Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.
We present the integrated properties of the stellar populations in the Universidad Complutense de Madrid Survey galaxies. Applying the techniques described in the first paper of this series, we derive ages, burst masses and metallicities of the newly -formed stars in our sample galaxies. The population of young stars is responsible for the Halpha emission used to detect the objects in the UCM Survey. We also infer total stellar masses and star formation rates in a consistent way taking into account the evolutionary history of each galaxy. We find that an average UCM galaxy has a total stellar mass of ~1E10 Msun, of which about 5% has been formed in an instantaneous burst occurred about 5 Myr ago, and sub-solar metallicity. Less than 10% of the sample shows massive starbursts involving more than half of the total mass of the galaxy. Several correlations are found among the derived properties. The burst strength is correlated with the extinction and with the integrated optical colours for galaxies with low obscuration. The current star formation rate is correlated with the gas content. A stellar mass-metallicity relation is also found. Our analysis indicates that the UCM Survey galaxies span a broad range in properties between those of galaxies completely dominated by current/recent star formation and those of normal quiescent spirals. We also find evidence indicating that star-formation in the local universe is dominated by galaxies considerably less massive than L*.
Studying the stellar kinematics of galaxies is a key tool in the reconstruction of their evolution. However, the current measurements of the stellar kinematics are complicated by several factors, including dust extinction and the presence of multiple stellar populations. We use integral field spectroscopic data of four galaxies from the TIMER survey to explore and compare the kinematics measured in different spectral regions that are sensitive to distinct stellar populations. We derive the line-of-sight velocity and velocity dispersion of both a young (<2 Gyr) and an old stellar population from the spectral regions around the H$beta$ line and the Ca II Triplet. In addition we obtain colour excess, mean age, and metallicity. We report a correlation of the colour excess with the difference in the kinematic parameters of the H$beta$ line and the Ca II Triplet range, which are dominated by young and old stellar populations, respectively. Young stellar populations, located primarily in nuclear rings, have higher velocity dispersions than old ones. These differences in the rings are typically 10 km/s in velocity dispersion, but up to a mean value of 24 km/s in the most extreme case. Trends with age exist in the nuclear rings but are less significant than those with dust extinction. We report different degrees of correlation of these trends among the galaxies in the sample, which are related to the size of the Voronoi bins in their rings. No clear trends for the difference of line-of-sight velocity are observed. The absence of these trends can be explained as a consequence of the masking process of the H$beta$ line during the kinematic extraction, as confirmed by dedicated simulations. Our study demonstrates that kinematic differences caused by different stellar populations can be identified in the central regions of nearby galaxies even from intermediate resolution spectroscopy.
123 - James Schombert 2014
A series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low H$alpha$ emission and high gas fractions that i ndicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into the Spitzer wavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S$^4$G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا