ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy

237   0   0.0 ( 0 )
 نشر من قبل Francois Ducastelle
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Perine Jaffrennou




اسأل ChatGPT حول البحث

The excitonic recombinations in hexagonal boron nitride (hBN) are investigated with spatially resolved cathodoluminescence spectroscopy in the UV range. Cathodoluminescence images of an individual hBN crystallite reveals that the 215 nm free excitonic line is quite homogeneously emitted along the crystallite whereas the 220 nm and 227 nm excitonic emissions are located in specific regions of the crystallite. Transmission electron microscopy images show that these regions contain a high density of crystalline defects. This suggests that both the 220 nm and 227 nm emissions are produced by the recombination of excitons bound to structural defects.

قيم البحث

اقرأ أيضاً

The calculated quasiparticle band structure of bulk hexagonal boron nitride using the all-electron GW approximation shows that this compound is an indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation for the electron-hole two- particle Green function has been used to compute its optical spectra and the results are found in excellent agreement with available experimental data. A detailed analysis is made for the excitonic structures within the band gap and found that the excitons belong to the Frenkel class and are tightly confined within the layers. The calculated exciton binding energy is much larger than that obtained by Watanabe {it et al} using a Wannier model to interpret their experimental results and assuming that h-BN is a direct-band-gap semiconductor.
We demonstrate that the valence energy-loss function of hexagonal boron nitride (hBN) displays a strong anisotropy in shape, excitation energy and dispersion for momentum transfer q parallel or perpendicular to the hBN layers. This is manifested by e .g. an energy shift of 0.7 eV that cannot be captured by single-particle approaches and is a demonstration of a strong anisotropy in the two-body electron-hole interaction. Furthermore, for in-plane directions of q we observe a splitting of the -plasmon in the M direction that is absent in the K direction and this can be traced back to band-structure effects.
Cathodoluminescence imaging and spectroscopy experiments on a single bamboo-like boron nitride nanotube are reported. Imaging experiments show that the luminescence is located all along the nanotube. Spectroscopy experiments point out the important r ole of dimensionality in this one dimensional object.
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.
The relative orientation of successive sheets, i.e. the stacking sequence, in layered two-dimensional materials is central to the electronic, thermal, and mechanical properties of the material. Often different stacking sequences have comparable cohes ive energy, leading to alternative stable crystal structures. Here we theoretically and experimentally explore different stacking sequences in the van der Waals bonded material hexagonal boron nitride (h-BN). We examine the total energy, electronic bandgap, and dielectric response tensor for five distinct high symmetry stacking sequences for both bulk and bilayer forms of h-BN. Two sequences, the generally assumed AA sequence and the relatively unknown (for h-BN) AB (Bernal) sequence, are predicted to have comparably low energy. We present a scalable modified chemical vapor deposition method that produces large flakes of virtually pure AB stacked h-BN; this new material complements the generally available AA stacked h-BN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا