ﻻ يوجد ملخص باللغة العربية
The excitonic recombinations in hexagonal boron nitride (hBN) are investigated with spatially resolved cathodoluminescence spectroscopy in the UV range. Cathodoluminescence images of an individual hBN crystallite reveals that the 215 nm free excitonic line is quite homogeneously emitted along the crystallite whereas the 220 nm and 227 nm excitonic emissions are located in specific regions of the crystallite. Transmission electron microscopy images show that these regions contain a high density of crystalline defects. This suggests that both the 220 nm and 227 nm emissions are produced by the recombination of excitons bound to structural defects.
The calculated quasiparticle band structure of bulk hexagonal boron nitride using the all-electron GW approximation shows that this compound is an indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation for the electron-hole two-
We demonstrate that the valence energy-loss function of hexagonal boron nitride (hBN) displays a strong anisotropy in shape, excitation energy and dispersion for momentum transfer q parallel or perpendicular to the hBN layers. This is manifested by e
Cathodoluminescence imaging and spectroscopy experiments on a single bamboo-like boron nitride nanotube are reported. Imaging experiments show that the luminescence is located all along the nanotube. Spectroscopy experiments point out the important r
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low
The relative orientation of successive sheets, i.e. the stacking sequence, in layered two-dimensional materials is central to the electronic, thermal, and mechanical properties of the material. Often different stacking sequences have comparable cohes