ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an understanding of the Of?p star HD 191612: optical spectroscopy

89   0   0.0 ( 0 )
 نشر من قبل Ian Howarth
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe-O8fp). The Balmer and HeI lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. Metal lines and HeII absorptions (including many selective emission lines but excluding He II 4686A emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with P(orb) = 1542d, e=0.45. We conduct a model-atmosphere analysis of the primary, and find that the system is consistent with a O8: giant with a B1: main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying `clock. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.

قيم البحث

اقرأ أيضاً

We present for the first time phase-resolved UV spectroscopy of an Of?p star, namely, HD 191612. The observations were acquired with the Space Telescope Imaging Spectrograph (STIS) on-board the Hubble Space Telescope (HST). We report the variability observed in the main photospheric and wind features and compare the results with previous findings for the Of?p star HD 108. We show that UV line strengths, H(alpha), and longitudinal magnetic field, vary coherently according to the rotational period (P = 537.6d), providing additional support for the magnetic oblique rotator scenario. The stellar and wind parameters of HD 191612 are obtained based on NLTE expanding atmosphere models. The peculiar wind line profile variations revealed by the new STIS data - not reproduced by 1D atmosphere models - are addressed through non-spherical MHD simulations coupled with radiative transfer. The basic aspects of the UV variability observed are explained and the structure of the dynamical magnetosphere of HD 191612 is discussed.
This paper reports high-precision Stokes V spectra of HD 191612 acquired using the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, in the context of the Magnetism in Massive stars (MiMeS) Project. Using measurements of the equivale nt width of the Halpha line and radial velocities of various metallic lines, we have updated both the spectroscopic and orbital ephemerides of this star. We confirm the presence of a strong magnetic field in the photosphere of HD 191612, and detect its variability. We establish that the longitudinal field varies in a manner consistent with the spectroscopic period of 537.6 d, in an approximately sinusoidal fashion. This demonstrates a firm connection between the magnetic field and the processes responsible for the line and continuum variability. Interpreting the variation of the longitudinal magnetic field within the context of the dipole oblique rotator model we obtain a best-fit surface magnetic field model with obliquity beta=67pm 5 deg and polar strength Bd=2450pm 400 G . The inferred magnetic field strength implies an equatorial wind magnetic confinement parameter eta*~50, supporting a picture in which the Halpha emission and photometric variability have their origin in an oblique, rigidly rotating magnetospheric structure resulting from a magnetically channeled wind. This interpretation is supported by our successful Monte Carlo radiative transfer modeling of the photometric variation, which assumes the enhanced plasma densities in the magnetic equatorial plane above the star implied by such a picture. Predictions of the continuum linear polarisation resulting from Thompson scattering from the magnetospheric material indicate that the Stokes Q and U variations are highly sensitive to the magnetospheric geometry, and that expected amplitudes are in the range of current instrumentation. (abridged)
We present the first ultraviolet spectrum of the peculiar, magnetic Of?p star HD 108 obtained in its spectroscopic low state. The new data, obtained with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope, reveal significan t changes compared to IUE spectra obtained in the high state: N V 1240, Si IV 1400, and C IV 1550 present weaker P-Cygni profiles (less absorption) in the new data, while N IV 1718 absorption is deeper, without the clear wind signature evident in the high state. Such changes contrast with those found in other magnetic massive stars, where more absorption is observed in the resonance doublets when the sightline is close to the plane of the magnetic equator. The new data show also that the photospheric Fe IV forest, at 1600--1700 angstroms, has strengthened compared to previous observations. The ultraviolet variability is large compared to that found in typical, non-magnetic O stars, but moderate when compared to the high-/low-state changes reported in the optical spectrum of HD 108 over several decades. We use non-LTE expanding-atmosphere models to analyze the new STIS observations. Overall, the results are in accord with a scenario in which the optical variability is mainly produced by magnetically constrained gas, close to the photosphere. The relatively modest changes found in the main ultraviolet wind lines suggest that the stellar wind is not substantially variable on a global scale. Nonetheless, multidimensional radiative-transfer models may be needed to understand some of the phenomena observed.
From observations made with the ESPaDOnS spectropolarimeter, recently installed on the 3.6-m Canada--France--Hawaii Telescope, we report the discovery of a strong magnetic field in the Of?p spectrum variable HD 191612 -- only the second known magneti c O star (following theta1 Ori C). The stability of the observed Zeeman signature over four nights of observation, together with the non-rotational shape of line profiles, argue that the rotation period of HD 191612 is significantly longer than the 9-d value previously proposed. We suggest that the recently identified 538-d spectral-variability period is the rotation period, in which case the observed line-of-sight magnetic field of -220+-38 G implies a large-scale field (assumed dipolar) with a polar strength of about -1.5 kG. If confirmed, this scenario suggests that HD 191612 is, essentially, an evolved version of the near-ZAMS magnetic O star theta1 Ori C, but with an even stronger field (about 15 kG at an age similar to that of theta1Ori C). We suggest that the rotation rate of HD 191612, which is exceptionally slow by accepted O-star standards, could be due to angular-momentum dissipation through a magnetically confined wind.
We report high resolution NIR spectroscopy of CO and OH emission from the Herbig Be star HD100546. We discuss how our results bear striking resemblance to several theoretically predicted signposts of giant planet formation. The properties of the CO a nd OH emission lines are consistent with our earlier interpretation that these diagnostics provide indirect evidence for a companion that orbits the star close to the disk wall (at ~13au). The asymmetry of the OH spectral line profiles and their lack of time variability are consistent with emission from gas in an eccentric orbit at the disk wall that is approximately stationary in the inertial frame. The time variable spectroastrometric properties of the CO v=1-0 emission line point to an orbiting source of CO emission with an emitting area similar to that expected for a circumplanetary disk (~0.1au^2) assuming the CO emission is optically thick. We also consider a counterhypothesis to this interpretation, namely that the variable CO emission arises from a bright spot on the disk wall. We conclude with a brief suggestion of further work that can distinguish between these scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا