ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Refining LQC and the Matter Hamiltonian

45   0   0.0 ( 0 )
 نشر من قبل Mairi Sakellariadou
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of loop quantum cosmology, we parametrise the lattice refinement by a parameter, $A$, and the matter Hamiltonian by a parameter, $delta$. We then solve the Hamiltonian constraint for both a self-adjoint, and a non-self-adjoint Hamiltonian operator. Demanding that the solutions for the wave-functions obey certain physical restrictions, we impose constraints on the two-dimensional, $(A,delta)$, parameter space, thereby restricting the types of matter content that can be supported by a particular lattice refinement model.

قيم البحث

اقرأ أيضاً

We study the importance of lattice refinement in achieving a successful inflationary era. We solve, in the continuum limit, the second order difference equation governing the quantum evolution in loop quantun cosmology, assuming both a fixed and a dy namically varying lattice in a suitable refinement model. We thus impose a constraint on the potential of a scalar field, so that the continuum approximation is not broken. Considering that such a scalar field could play the role of the inflaton, we obtain a second constraint on the inflationary potential so that there is consistency with the CMB data on large angular scales. For a $m^2phi^2/2$ inflationary model, we combine the two constraints on the inflaton potential to impose an upper limit on $m$, which is severely fine-tuned in the case of a fixed lattice. We thus conclude that lattice refinement is necessary to achieve a natural inflationary model.
We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/ KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. This paper is based on a submission (v1) in response to the Call for White Papers for the Voyage 2050 long-term plan in the ESA Science Programme. ESA limited the number of White Paper authors to 30. However, in this version (v2) we have welcomed as supporting authors participants in the Workshop on Atomic Experiments for Dark Matter and Gravity Exploration held at CERN: ({tt https://indico.cern.ch/event/830432/}), as well as other interested scientists, and have incorporated additional material.
151 - Liuyuan Shen , Yunlong Zheng , 2019
We revisit the two-field mimetic gravity model with shift symmetries recently proposed in the literature, especially the problems of degrees of freedom and stabilities. We first study the model at the linear cosmological perturbation level by quadrat ic Lagrangian and Hamiltonian formulations. We show that there are actually two (instead of one) scalar degrees of freedom in this model in addition to two tensor modes. We then push on the study to the full non-linear level in terms of the Hamiltonian analysis, and confirm our result from the linear perturbation theory. We also consider the case where the kinetic terms of the two mimetic scalar fields have opposite signs in the constraint equation. We point out that in this case the model always suffers from the ghost instability problem.
We propose a novel class of degenerate higher-order scalar-tensor theories as an extension of mimetic gravity. By performing a noninvertible conformal transformation on seed scalar-tensor theories which may be nondegenerate, we can generate a large c lass of theories with at most three physical degrees of freedom. We identify a general seed theory for which this is possible. Cosmological perturbations in these extended mimetic theories are also studied. It is shown that either of tensor or scalar perturbations is plagued with gradient instabilities, except for a special case where the scalar perturbations are presumably strongly coupled, or otherwise there appear ghost instabilities.
We survey the prospective sensitivities of terrestrial and space-borne atom interferometers (AIs) to gravitat- ional waves (GWs) generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravi tational gradient noise (GGN) in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space- borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100m and 1km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes. We also review the capabilities of AION and AEDGE for detecting coherent waves of ultralight scalar dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا