ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical spectroscopy of the low mass X-ray binary GX9+9

158   0   0.0 ( 0 )
 نشر من قبل Remon Cornelisse
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase-resolved medium resolution VLT spectroscopy of the low mass X-ray binary GX9+9 has revealed narrow CIII emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230+/-35 km/s. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of f(M_1)>=0.22M_sun. Rotational broadening estimates together with assumptions for the mass donor give 0.07<q<0.35 and 182<K_2<406 km/s. Despite a low mass ratio, there is no evidence for a superhump in our dataset. Doppler maps of GX9+9 show the presence of a stream overflow, either in the form of material flowing downward along the accretion disk rim or in a similar fashion as occurs in high mass transfer rate cataclysmic variables known as the SW Sex stars. Finally we note that the Bowen region in GX9+9 is dominated by CIII instead of NIII emission as has been the case for most other X-ray binaries.



قيم البحث

اقرأ أيضاً

We present initial results from observations of the low-mass X-ray binary EXO 0748-67 with the Reflection Grating Spectrometer on board the XMM-Newton Observatory. The spectra exhibit discrete structure due to absorption and emission from ionized neo n, oxygen, and nitrogen. We use the quantitative constraints imposed by the spectral features to develop an empirical model of the circumsource material. This consists of a thickened accretion disk with emission and absorption in the plasma orbiting high above the binary plane. This model presents challenges to current theories of accretion in X-ray binary systems.
62 - A. van der Meer 2004
We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The ligh tcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase phi ~0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (alpha ~1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter xi further substantiates this conclusion.
We present a comprehensive spectral analysis of the high mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as ~40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high energy cut-off and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by the presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2--3 with significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggests the dipping activity in Cen X-3 is caused by obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in case of dipping low mass X-ray binaries.
We have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data. The new position significantly differs from a previously published Chandra po sition for this source. Based on the revised X-ray position we have identified a new near-infrared (NIR) counterpart to GX 9+1 in Ks-band images obtained with the PANIC and FourStar cameras on the Magellan Baade Telescope. NIR spectra of this Ks=16.5+-0.1 mag star taken with the FIRE spectrograph on the Baade Telescope show a strong Br-gamma emission line, which is a clear signature that we discovered the true NIR counterpart to GX 9+1. The mass donor in GX 9+1 cannot be a late-type giant, as such a star would be brighter than the estimated absolute Ks magnitude of the NIR counterpart. The slope of the dereddened NIR spectrum is poorly constrained due to uncertainties in the column density N_H and NIR extinction. Considering the sources distance and X-ray luminosity, we argue that N_H likely lies near the high end of the previously suggested range. If this is indeed the case, the NIR spectrum is consistent with thermal emission from a heated accretion disk, possibly with a contribution from the secondary. In this respect, GX 9+1 is similar to other bright atolls and the Z sources whose NIR spectra do not show the slope that is expected for a dominant contribution from optically thin synchrotron emission from the inner regions of a jet.
We report the discovery of an optical counterpart to a quiescent neutron star in the globular cluster Omega Centauri (NGC 5139). The star was found as part of our wide-field imaging study of Omega Cen using the Advanced Camera for Surveys (ACS) on Hu bble Space Telescope. Its magnitude and color (R_625 = 25.2, B_435 - R_625 = 1.5) place it more than 1.5 magnitudes to the blue side of the main sequence. Through an H-alpha filter it is ~ 1.3 magnitudes brighter than cluster stars of comparable M_625 magnitude. The blue color and H-alpha excess suggest the presence of an accretion disk, implying that the neutron star is accreting from a binary companion and is thus a quiescent low-mass X-ray binary. If the companion is a main-sequence star, then the faint absolute magnitude (M_625 ~ 11.6) constrains it to be of very low mass (M <~ 0.14 Msolar). The faintness of the disk (M_435 ~ 13) suggests a very low rate of accretion onto the neutron star. We also detect 13 probable white dwarfs and three possible BY Draconis stars in the 20 x 20 region analyzed here, suggesting that a large number of white dwarfs and active binaries will be observable in the full ACS study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا