ترغب بنشر مسار تعليمي؟ اضغط هنا

The $k$-anonymity Problem is Hard

157   0   0.0 ( 0 )
 نشر من قبل Riccardo Dondi
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of publishing personal data without giving up privacy is becoming increasingly important. An interesting formalization recently proposed is the k-anonymity. This approach requires that the rows in a table are clustered in sets of size at least k and that all the rows in a cluster become the same tuple, after the suppression of some records. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is known to be NP-hard when the values are over a ternary alphabet, k = 3 and the rows length is unbounded. In this paper we give a lower bound on the approximation factor that any polynomial-time algorithm can achive on two restrictions of the problem,namely (i) when the records values are over a binary alphabet and k = 3, and (ii) when the records have length at most 8 and k = 4, showing that these restrictions of the problem are APX-hard.



قيم البحث

اقرأ أيضاً

The problem of publishing personal data without giving up privacy is becoming increasingly important. An interesting formalization that has been recently proposed is the $k$-anonymity. This approach requires that the rows of a table are partitioned i n clusters of size at least $k$ and that all the rows in a cluster become the same tuple, after the suppression of some entries. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is known to be APX-hard even when the records values are over a binary alphabet and $k=3$, and when the records have length at most 8 and $k=4$ . In this paper we study how the complexity of the problem is influenced by different parameters. In this paper we follow this direction of research, first showing that the problem is W[1]-hard when parameterized by the size of the solution (and the value $k$). Then we exhibit a fixed parameter algorithm, when the problem is parameterized by the size of the alphabet and the number of columns. Finally, we investigate the computational (and approximation) complexity of the $k$-anonymity problem, when restricting the instance to records having length bounded by 3 and $k=3$. We show that such a restriction is APX-hard.
We study the hardness of the dihedral hidden subgroup problem. It is known that lattice problems reduce to it, and that it reduces to random subset sum with density $> 1$ and also to quantum sampling subset sum solutions. We examine a decision versio n of the problem where the question asks whether the hidden subgroup is trivial or order two. The decision problem essentially asks if a given vector is in the span of all coset states. We approach this by first computing an explicit basis for the coset space and the perpendicular space. We then look at the consequences of having efficient unitaries that use this basis. We show that if a unitary maps the basis to the standard basis in any way, then that unitary can be used to solve random subset sum with constant density $>1$. We also show that if a unitary can exactly decide membership in the coset subspace, then the collision problem for subset sum can be solved for density $>1$ but approaching $1$ as the problem size increases. This strengthens the previous hardness result that implementing the optimal POVM in a specific way is as hard as quantum sampling subset sum solutions.
The Densest $k$-Subgraph (D$k$S) problem, and its corresponding minimization problem Smallest $p$-Edge Subgraph (S$p$ES), have come to play a central role in approximation algorithms. This is due both to their practical importance, and their usefulne ss as a tool for solving and establishing approximation bounds for other problems. These two problems are not well understood, and it is widely believed that they do not an admit a subpolynomial approximation ratio (although the best known hardness results do not rule this out). In this paper we generalize both D$k$S and S$p$ES from graphs to hypergraphs. We consider the Densest $k$-Subhypergraph problem (given a hypergraph $(V, E)$, find a subset $Wsubseteq V$ of $k$ vertices so as to maximize the number of hyperedges contained in $W$) and define the Minimum $p$-Union problem (given a hypergraph, choose $p$ of the hyperedges so as to minimize the number of vertices in their union). We focus in particular on the case where all hyperedges have size 3, as this is the simplest non-graph setting. For this case we provide an $O(n^{4(4-sqrt{3})/13 + epsilon}) leq O(n^{0.697831+epsilon})$-approximation (for arbitrary constant $epsilon > 0$) for Densest $k$-Subhypergraph and an $tilde O(n^{2/5})$-approximation for Minimum $p$-Union. We also give an $O(sqrt{m})$-approximation for Minimum $p$-Union in general hypergraphs. Finally, we examine the interesting special case of interval hypergraphs (instances where the vertices are a subset of the natural numbers and the hyperedges are intervals of the line) and prove that both problems admit an exact polynomial time solution on these instances.
Hypertree decompositions, as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHD) are hypergraph decomposition methods successfully used for answering conjunctive qu eries and for the solution of constraint satisfaction problems. Every hypergraph H has a width relative to each of these decomposition methods: its hypertree width hw(H), its generalized hypertree width ghw(H), and its fractional hypertree width fhw(H), respectively. It is known that hw(H) <= k can be checked in polynomial time for fixed k, while checking ghw(H) <= k is NP-complete for any k greater than or equal to 3. The complexity of checking fhw(H) <= k for a fixed k has been open for more than a decade. We settle this open problem by showing that checking fhw(H) <= k is NP-complete, even for k=2. The same construction allows us to prove also the NP-completeness of checking ghw(H) <= k for k=2. After proving these hardness results, we identify meaningful restrictions, for which checking for bounded ghw or fhw becomes tractable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا