ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-lying ud anti-s anti-s configurations in a non-relativistic constituent quark model

137   0   0.0 ( 0 )
 نشر من قبل Wen Ling Wang
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The energies of the low-lying isoscalar and isovector ud anti-s anti-s configurations with spin-parity J^P=0^+, 1^+, and 2^+ are calculated in a non-relativistic constituent quark model by use of the variational method. The contributions of various parts of the quark-quark interacting potentials including the s-channel interaction are investigated, and the effect of different forms of confinement potential is examined. The model parameters are determined by the same method as in our previous work, and they still can satisfactorily describe the nucleon-nucleon scattering phase shifts and the hyperon-nucleon cross sections. The parameters of the s-channel interaction are fixed by the masses of K and K^* mesons, for which the size parameter is taken to be two possible values. When it is chosen as the same as baryons, the numerical results show that the masses of all the ud anti-s anti-s configurations are higher than the corresponding meson-meson thresholds. But when the size parameter for the K and K^* mesons is adjusted to be smaller than that for the baryons, the ud anti-s anti-s configuration with I=0 and J^P=1^+ is found to lie lower than the K^*K^* threshold, furthermore, this state has a very small KK^* component and the interaction matrix elements between this state and KK^* is comparatively small, thus its coupling to the KK^* channel will consequently be weak and it might be regarded as a possible tetraquark candidate.



قيم البحث

اقرأ أيضاً

337 - F. Huang , W.L. Wang , Z.Y. Zhang 2007
A preliminary investigation of the anti-K N interaction is performed within a chiral constituent quark model by solving the resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory descr iption of the S-, P-, D-, F-wave KN scattering phase shifts. The channel-coupling between anti-K N, pi Lambda and pi Sigma is considered, and the scattering phase shifts as well as the bound-state problem of anti-K N are dynamically studied. The results show that the S-wave anti-K N interaction in the isospin I=0 channel is attractive, and in the extended chiral SU(3) quark model such an attraction can make for an anti-K N bound state, which appears as a pi Sigma resonance in the coupled-channel calculation, while the chiral SU(3) quark model cannot accommodate the existence of an anti-K N bound state. It seems that the vector meson exchanges are necessary to be introduced in the quark-quark interactions if one tries to explain the Lambda(1405) as an anti-K N bound state or a pi Sigma - anti-K N resonance state.
${bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grou nded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter Equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. ${bf Results}$ From this formalism, we define and compute a new quantity --- the Euclidean density function (EDF) --- an object that characterizes the nucleons various charge distributions as functions of the quarks Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the dressing effect on the protons axial-singlet charge to be small in magnitude and consistent with zero. ${bf Conclusions}$ The scalar quark $+$ diquark ECQM is a step toward a realistic quark model in Euclidean space, and urges additional refinements. The small size we obtain for the impact of the dressed vertex on the axial-singlet charge suggests that models without this effect are on firm ground to neglect it.
169 - S. G. Yuan , C. S. An , K. W. Wei 2012
Spectrum of low-lying five-quark configurations with strangeness quantum number $S=-3$ and negative parity is studied in three kinds of constituent quark models, namely the one gluon exchange, Goldstone Boson exchange, and instanton-induced hyperfine interaction models, respectively. Our numerical results show that the lowest energy states in all the three employed models are lying at $sim$1800 MeV, about 200 MeV lower than predictions of various quenched three-quark models. In addition, it is very interesting that the state with the lowest energy in one gluon exchange model is with spin 3/2, but 1/2 in the other two models.
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free par ticles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $sigma$-model together with weak excitation of the $Delta(1232)$ resonance and its subsequent decay into $Npi$. With these currents we compute the five 2p-2h response functions contributing to $( u_l,l^-)$ and $(overline{ u}_l,l^+)$ reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace {em et al.,} Nuclear Physics A 726 (2003) 303. Thus our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا