ﻻ يوجد ملخص باللغة العربية
We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having $k$ rows, on a basis of the BRST--BFV approach suggested for bosonic fields
We consider massive half-integer higher spin fields coupled to an external constant electromagnetic field in flat space of an arbitrary dimension and construct a gauge invariant Lagrangian in the linear approximation in the external field. A procedur
We develop the BRST approach to gauge invariant Lagrangian construction for the massive mixed symmetry integer higher spin fields described by the rank-two Young tableaux in arbitrary dimensional Minkowski space. The theory is formulated in terms of
The details of Lagrangian description of irreducible integer higher-spin representations of the Poincare group with an Young tableaux $Y[hat{s}_1,hat{s}_2]$ having $2$ columns are considered for Bose particles propagated on an arbitrary dimensional M
The details of unconstrained Lagrangian formulations (being continuation of earlier developed research for Bose particles in NPB 862 (2012) 270, [arXiv:1110.5044[hep-th]], Phys. of Part. and Nucl. 43 (2012) 689, [arXiv:1202.4710 [hep-th]]) are review