ترغب بنشر مسار تعليمي؟ اضغط هنا

Expanding Space: the Root of all Evil?

124   0   0.0 ( 0 )
 نشر من قبل Geraint F. Lewis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While it remains the staple of virtually all cosmological teaching, the concept of expanding space in explaining the increasing separation of galaxies has recently come under fire as a dangerous idea whose application leads to the development of confusion and the establishment of misconceptions. In this paper, we develop a notion of expanding space that is completely valid as a framework for the description of the evolution of the universe and whose application allows an intuitive understanding of the influence of universal expansion. We also demonstrate how arguments against the concept in general have failed thus far, as they imbue expanding space with physical properties not consistent with the expectations of general relativity.

قيم البحث

اقرأ أيضاً

We obtain all the stationary vacua of de Sitter space by classifying the inequivalent timelike isometries of the de Sitter group. Besides the static vacuum, de Sitter space also admits a family of rotating vacua, which we use to obtain Kerr-de Sitter solutions in various dimensions. By writing the metric in a coordinate system adapted to the rotating Hamiltonian, we show that empty de Sitter space admits not only an observer-dependent horizon but also an observer-dependent ergosphere.
The emergence of (3+1)-dimensional expanding space-time in the Lorentzian type IIB matrix model is an intriguing phenomenon which was observed in Monte Carlo studies of this model. In particular, this may be taken as a support to the conjecture that the model is a nonperturbative formulation of superstring theory in (9+1) dimensions. In this paper we investigate the space-time structure of the matrices generated by simulating this model and its simplifie
130 - Gerard Gilmore 2018
Astrometry from space has unique advantages over ground-based observations: the all-sky coverage, relatively stable, and temperature and gravity invariant operating environment delivers precision, accuracy and sample volume several orders of magnitud e greater than ground-based results. Even more importantly, absolute astrometry is possible. The European Space Agency Cornerstone mission Gaia is delivering that promise. Gaia provides 5-D phase space measurements - 3 spatial coordinates and two space motions in the plane of the sky - for a representative sample of the Milky ways stellar populations, including over two billion stars, being about one percent of the stars over about 50 percent of the radius. Full 6-D phase space data is delivered from Gaias line-of-sight (radial) velocities for the 300 million brightest stars. These data make substantial contributions to astrophysics and fundamental physics on scales from the Solar System to cosmology. A knowledge revolution is underway.
We show that entanglement can be used to detect spacetime curvature. Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This entanglement can be swapped to spatially separated quantum systems using standard local couplings. A single, inertial field detector in the exponentially expanding (de Sitter) vacuum responds as if it were bathed in thermal radiation in a Minkowski universe. We show that using two inertial detectors, interactions with the field in the thermal case will entangle certain detector pairs that would not become entangled in the corresponding de Sitter case. The two universes can thus be distinguished by their entangling power.
We investigate quantum vacuum effects for a massive scalar field, induced by two planar boundaries in background of a linearly expanding spatially flat Friedmann-Robertson-Walker spacetime for an arbitrary number of spatial dimensions. For the Robin boundary conditions and for general curvature coupling parameter, a complete set of mode functions is presented and the related Hadamard function is evaluated. The results are specified for the most important special cases of the adiabatic and conformal vacuum states. The vacuum expectation values of the field squared and of the energy-momentum tensor are investigated for a massive conformally coupled field. The vacuum energy-momentum tensor, in addition to the diagonal components, has nonzero off-diagonal component describing energy flux along the direction perpendicular to the plates. The influence of the gravitational field on the local characteristics of the vacuum state is essential at distances from the boundaries larger than the curvature radius of the background spacetime. In contrast to the Minkowskian bulk, at large distances the boundary-induced expectation values follow as power law for both massless and massive fields. Another difference is that the Casimir forces acting on the separate plates do not coincide if the corresponding Robin coefficients are different. At large separations between the plates the decay of the forces is power law. We show that during the cosmological expansion the forces may change the sign.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا