ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistency of support vector machines for forecasting the evolution of an unknown ergodic dynamical system from observations with unknown noise

56   0   0.0 ( 0 )
 نشر من قبل Marian Anghel
 تاريخ النشر 2009
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of forecasting the next (observable) state of an unknown ergodic dynamical system from a noisy observation of the present state. Our main result shows, for example, that support vector machines (SVMs) using Gaussian RBF kernels can learn the best forecaster from a sequence of noisy observations if (a) the unknown observational noise process is bounded and has a summable $alpha$-mixing rate and (b) the unknown ergodic dynamical system is defined by a Lipschitz continuous function on some compact subset of $mathbb{R}^d$ and has a summable decay of correlations for Lipschitz continuous functions. In order to prove this result we first establish a general consistency result for SVMs and all stochastic processes that satisfy a mixing notion that is substantially weaker than $alpha$-mixing.

قيم البحث

اقرأ أيضاً

Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature. We demonstrate that SVM can be used to balance covariates and estimate average causal effects under the unconfoundedness assumption. Specifically, we adapt the SVM classifier as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups while simultaneously maximizing effective sample size. We also show that SVM is a continuous relaxation of the quadratic integer program for computing the largest balanced subset, establishing its direct relation to the cardinality matching method. Another important feature of SVM is that the regularization parameter controls the trade-off between covariate balance and effective sample size. As a result, the existing SVM path algorithm can be used to compute the balance-sample size frontier. We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods. Finally, we conduct simulation and empirical studies to evaluate the performance of the proposed methodology and find that SVM is competitive with the state-of-the-art covariate balancing methods.
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed number of states has not been studied until recently. In addition, although approaches to address the problem for discrete-time models have been developed, no method has been successfully implemented for the continuous-time case. We focus on reversible jump Markov chain Monte Carlo which allows the trans-dimensional move among different numbers of states in order to perform Bayesian inference for the unknown number of states. Specifically, we propose an efficient split-combine move which can facilitate the exploration of the parameter space, and demonstrate that it can be implemented effectively at scale. Subsequently, we extend this algorithm to the context of model-based clustering, allowing numbers of states and clusters both determined during the analysis. The model formulation, inference methodology, and associated algorithm are illustrated by simulation studies. Finally, We apply this method to real data from a Canadian healthcare system in Quebec.
132 - Miguel del Alamo 2021
We consider ill-posed inverse problems where the forward operator $T$ is unknown, and instead we have access to training data consisting of functions $f_i$ and their noisy images $Tf_i$. This is a practically relevant and challenging problem which cu rrent methods are able to solve only under strong assumptions on the training set. Here we propose a new method that requires minimal assumptions on the data, and prove reconstruction rates that depend on the number of training points and the noise level. We show that, in the regime of many training data, the method is minimax optimal. The proposed method employs a type of convolutional neural networks (U-nets) and empirical risk minimization in order to fit the unknown operator. In a nutshell, our approach is based on two ideas: the first is to relate U-nets to multiscale decompositions such as wavelets, thereby linking them to the existing theory, and the second is to use the hierarchical structure of U-nets and the low number of parameters of convolutional neural nets to prove entropy bounds that are practically useful. A significant difference with the existing works on neural networks in nonparametric statistics is that we use them to approximate operators and not functions, which we argue is mathematically more natural and technically more convenient.
The problem of estimating a sparse signal from low dimensional noisy observations arises in many applications, including super resolution, signal deconvolution, and radar imaging. In this paper, we consider a sparse signal model with non-stationary m odulations, in which each dictionary atom contributing to the observations undergoes an unknown, distinct modulation. By applying the lifting technique, under the assumption that the modulating signals live in a common subspace, we recast this sparse recovery and non-stationary blind demodulation problem as the recovery of a column-wise sparse matrix from structured linear observations, and propose to solve it via block $ell_{1}$-norm regularized quadratic minimization. Due to observation noise, the sparse signal and modulation process cannot be recovered exactly. Instead, we aim to recover the sparse support of the ground truth signal and bound the recovery errors of the signals non-zero components and the modulation process. In particular, we derive sufficient conditions on the sample complexity and regularization parameter for exact support recovery and bound the recovery error on the support. Numerical simulations verify and support our theoretical findings, and we demonstrate the effectiveness of our model in the application of single molecule imaging.
We discuss model selection to determine whether the variance-covariance matrix of a multivariate Gaussian model with known mean should be considered to be a constant diagonal, a non-constant diagonal, or an arbitrary positive definite matrix. Of part icular interest is the relationship between Bayesian evidence and the flexibility penalty due to Priebe and Rougier. For the case of an exponential family in canonical form equipped with a conjugate prior for the canonical parameter, flexibility may be exactly decomposed into the usual BIC likelihood penalty and a $O_p(1)$ term, the latter of which we explicitly compute. We also investigate the asymptotics of Bayes factors for linearly nested canonical exponential families equipped with conjugate priors; in particular, we find the exact rates at which Bayes factors correctly diverge in favor of the correct model: linearly and logarithmically in the number of observations when the full and nested models are true, respectively. Such theoretical considerations for the general case permit us to fully express the asymptotic behavior of flexibility and Bayes factors for the variance-covariance structure selection problem when we assume that the prior for the model precision is a member of the gamma/Wishart family of distributions or is uninformative. Simulations demonstrate evidences immediate and superior performance in model selection compared to approximate criteria such as the BIC. We extend the framework to the multivariate Gaussian linear model with three data-driven examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا