ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-boson dynamics beyond conventional perturbation theories

45   0   0.0 ( 0 )
 نشر من قبل Francesco Nesi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel approximation scheme is proposed to describe the dynamics of the spin-boson problem. Being nonperturbative in the coupling strength nor in the tunneling frequency, it gives reliable results over a wide regime of temperatures and coupling strength to the thermal environment for a large class of bath spectral densities. We use a path-integral approach and start from the exact solution for the two-level system population difference in the form of a generalized master equation (GME). Then, we approximate inter-blip and blip-sojourns interactions up to linear order, while retaining all intra-blip correlations to find the kernels entering the GME in analytical form. Our approximation scheme, which we call Weakly-Interacting Blip Approximation (WIBA), fully agrees with conventional perturbative approximations in the tunneling matrix element (Non-Interacting Blip Approximation) or in the system-bath coupling strength.

قيم البحث

اقرأ أيضاً

The determination of the Landau free energy (the grand thermodynamic potential) by a perturbation theory is advanced to arbitrary order for the specific case of non-interacting fermionic systems perturbed by a one-particle potential. Peculiar feature s of the formalism are highlighted, and its applicability for bosons is indicated. The results are employed to develop a more explicit approach describing exchange interactions between spins of Andersons magnetic impurities in metals, semiconductors, and insulators. Within the fourth order our theory provides on the equal footing formulae for the Ruderman-Kittel-Kasuya-Yosida, Bloembergen-Rowland, superexchange, and two-electron exchange integrals at non-zero temperature.
In this paper we reconsider the Mass Action Law (MAL) for the anomalous reversible reaction $Arightleftarrows B$ with diffusion. We provide a mesoscopic description of this reaction when the transitions between two states $A$ and $B$ are governed by anomalous (heavy-tailed) waiting-time distributions. We derive the set of mesoscopic integro-differential equations for the mean densities of reacting and diffusing particles in both states. We show that the effective reaction rate memory kernels in these equations and the uniform asymptotic states depend on transport characteristics such as jumping rates. This is in contradiction with the classical picture of MAL. We find that transport can even induce an extinction of the particles such that the density of particles $A$ or $B$ tends asymptotically to zero. We verify analytical results by Monte Carlo simulations and show that the mesoscopic densities exhibit a transient growth before decay.
We study the stroboscopic dynamics of a spin-$S$ object subjected to $delta$-function kicking in the transverse magnetic field which is generated following the Fibonacci sequence. The corresponding classical Hamiltonian map is constructed in the larg e spin limit, $S rightarrow infty$. Upon evolving such a map for large kicking strength and time period, the phase space appears to be chaotic; interestingly, however, the geodesic distance increases linearly with the stroboscopic time implying that the Lyapunov exponent is zero. We derive the Sutherland invariant for the underlying $SO(3)$ matrix governing the dynamics of classical spin variables and study the orbits for weak kicking strength. For the quantum dynamics, we observe that although the phase coherence of a state is retained throughout the time evolution, the fluctuations in the mean values of the spin operators exhibit fractality which is also present in the Floquet eigenstates. Interestingly, the presence of an interaction with another spin results in an ergodic dynamics leading to infinite temperature thermalization.
The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling $G$ between twisting and bending, known to arise from the groove a symmetry of the DNA double helix. Here, the effect of $G$ on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness $C_text{eff}$ for small twist-bend coupling. We find that the bare $G$ is screened by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with $G=0$, but with long-wavelength bending and twisting rigidities that are shifted by $G$-dependent amounts. Using results for torsional and bending rigidities for freely-fluctuating DNA, we show how our perturbative results can be extended to a non-perturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo triad and molecular dynamics oxDNA models, characterized by different degrees of coarse-graining, validating the perturbative and non-perturbative analyses. While our theory is in generally-good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely-used coarse-grained models.
We reconsider the moments of the reduced density matrix of two disjoint intervals and of its partial transpose with respect to one interval for critical free fermionic lattice models. It is known that these matrices are sums of either two or four Gau ssian matrices and hence their moments can be reconstructed as computable sums of products of Gaussian operators. We find that, in the scaling limit, each term in these sums is in one-to-one correspondence with the partition function of the corresponding conformal field theory on the underlying Riemann surface with a given spin structure. The analytical findings have been checked against numerical results for the Ising chain and for the XX spin chain at the critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا