ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and Initial Performance of SHARP, a Polarimeter for the SHARC-II Camera at the Caltech Submillimeter Observatory

354   0   0.0 ( 0 )
 نشر من قبل Giles Novak
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a fore-optics module that converts the SHARC-II camera at the Caltech Submillimeter Observatory into a sensitive imaging polarimeter at wavelengths of 350 and 450 microns. We refer to this module as SHARP. SHARP splits the incident radiation into two orthogonally polarized beams that are then re-imaged onto opposite ends of the 32 x 12 pixel detector array in SHARC-II. A rotating half-wave plate is used just upstream from the polarization-splitting optics. The effect of SHARP is to convert SHARC-II into a dual-beam 12 x 12 pixel polarimeter. A novel feature of SHARPs design is the use of a crossed grid in a submillimeter polarimeter. Here we describe the detailed optical design of SHARP and present results of tests carried out during our first few observing runs. At 350 microns, the beam size (9 arcseconds), throughput (75%), and instrumental polarization (< 1%) are all very close to our design goals.



قيم البحث

اقرأ أيضاً

We present a summary of data obtained with the 350 micron polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and flux contours. The summary includes over 4300 individual measu rements in 56 Galactic sources and 2 galaxies. Of these measurements, 2153 have P >= 3sigma_p statistical significance. The median polarization of the entire data set is 1.46%.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X -ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCuS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a CZT detector assembly to measure the polarization of 20-80keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ~80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2-100keV energy band.
181 - T. Onaka , H. Matsuhara , T. Wada 2007
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IR C is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10 x 10 and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25 away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of IRC.
The advent of submillimeter wavelength array cameras operating on large ground-based telescopes is revolutionizing imaging at these wavelengths, enabling high-resolution submillimeter surveys of dust emission in star-forming regions and galaxies. Her e we present a recent 350 micron image of the edge-on galaxy NGC 891, which was obtained with the Submillimeter High Angular Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We find that high resolution submillimeter data is a vital complement to shorter wavelength satellite data, which enables a reliable separation of the cold dust component seen at millimeter wavelengths from the warmer component which dominates the far-infrared (FIR) luminosity.
The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma-ray astronomy. An innovative 9.7 m aperture, dual-mirror Schwarzschild-Couder Telescope (SCT) design is a candidate design for CTA Medium-S ized Telescopes. A prototype SCT (pSCT) has been constructed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is currently partially instrumented with 1600 pixels covering a field of view of 2.7 degrees square. The small plate scale of the optical system allows densely packed silicon photomultipliers to be used, which combined with high-density trigger and waveform readout electronics enable the high-resolution camera. The cameras electronics are capable of imaging air shower development at a rate of one billion samples per second. We describe the commissioning and performance of the pSCT camera, including trigger and waveform readout performance, calibration, and absolute GPS time stamping. We also present the upgrade to the camera, which is currently underway. The upgrade will fully populate the focal plane, increasing the field of view to 8 degree diameter, and lower the front-end electronics noise, enabling a lower trigger threshold and improved reconstruction and background rejection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا