ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifolds with Pointwise Ricci Pinched Curvature

312   0   0.0 ( 0 )
 نشر من قبل Xi-Ping Zhu
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Hui-Ling Gu




اسأل ChatGPT حول البحث

In this paper, we proved a compactness result about Riemannian manifolds with an arbitrary pointwisely pinched Ricci curvature tensor.



قيم البحث

اقرأ أيضاً

91 - Lei Ni , Qingsong Wang , 2018
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized ve ctor bundles. These examples show the abundance of Kahler manifolds which admit metrics of $Ric^perp>0$. Secondly we prove some (algebraic) geometric consequences of the condition $Ric^perp>0$ to illustrate that the condition is also quite restrictive. Finally this last point is made evident with a classification result in dimension three and a partial classification in dimension four.
141 - Xiaodong Cao , Hung Tran 2016
In this paper, we obtain classification of four-dimensional Einstein manifolds with positive Ricci curvature and pinched sectional curvature. In particular, the first result concerns with an upper bound of sectional curvature, improving a theorem of E. Costa. The second is a generalization of D. Yangs result assuming an upper bound on the difference between sectional curvatures.
For $k ge 2,$ let $M^{4k-1}$ be a $(2k{-}2)$-connected closed manifold. If $k equiv 1$ mod $4$ assume further that $M$ is $(2k{-}1)$-parallelisable. Then there is a homotopy sphere $Sigma^{4k-1}$ such that $M sharp Sigma$ admits a Ricci positive metr ic. This follows from a new description of these manifolds as the boundaries of explicit plumbings.
96 - Paul W.Y. Lee 2015
Measure contraction property is a synthetic Ricci curvature lower bound for metric measure spaces. We consider Sasakian manifolds with non-negative Tanaka-Webster Ricci curvature equipped with the metric measure space structure defined by the sub-Rie mannian metric and the Popp measure. We show that these spaces satisfy the measure contraction property $MCP(0,N)$ for some positive integer $N$. We also show that the same result holds when the Sasakian manifold is equipped with a family of Riemannian metrics extending the sub-Riemannian one.
121 - Jiayin Pan 2020
We survey the results on fundamental groups of open manifolds with nonnegative Ricci curvature. We also present some open questions on this topic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا