ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of Graded Left-symmetric Algebra Structures on Witt and Virasoro Algebras

133   0   0.0 ( 0 )
 نشر من قبل Hongjia Chen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find that a compatible graded left-symmetric algebra structure on the Witt algebra induces an indecomposable module of the Witt algebra with 1-dimensional weight spaces by its left multiplication operators. From the classification of such modules of the Witt algebra, the compatible graded left-symmetric algebra structures on the Witt algebra are classified. All of them are simple and they include the examples given by Chapoton and Kupershmidt. Furthermore, we classify the central extensions of these graded left-symmetric algebras which give the compatible graded left-symmetric algebra structures on the Virasoro algebra. They coincide with the examples given by Kupershmidt.

قيم البحث

اقرأ أيضاً

116 - Xiaoli Kong , Chengming Bai 2008
In this paper, we classify the compatible left-symmetric superalgebra structures on the super-Virasoro algebras satisfying certain natural conditions.
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
In this paper, we study a certain deformation $D$ of the Virasoro algebra that was introduced and called $q$-Virasoro algebra by Nigro,in the context of vertex algebras. Among the main results, we prove that for any complex number $ell$, the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of quasi modules for a certain vertex algebra of affine type. We also prove that the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of $mathbb{Z}$-equivariant $phi$-coordinated quasi modules for the same vertex algebra. In the process, we introduce and employ a certain infinite dimensional Lie algebra which is defined in terms of generators and relations and then identified explicitly with a subalgebra of $mathfrak{gl}_{infty}$.
124 - Chengming Bai 2007
We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakahler Lie algebra or a phase space of a Lie algebra in mathematical physics. We introduce and study coboundary left-symmetric bialgebras and our study leads to what we call $S$-equation, which is an analogue of the classical Yang-Baxter equation. In a certain sense, the $S$-equation associated to a left-symmetric algebra reveals the left-symmetry of the products. We show that a symmetric solution of the $S$-equation gives a parakahler Lie algebra. We also show that such a solution corresponds to the symmetric part of a certain operator called ${cal O}$-operator, whereas a skew-symmetric solution of the classical Yang-Baxter equation corresponds to the skew-symmetric part of an ${cal O}$-operator. Thus a method to construct symmetric solutions of the $S$-equation (hence parakahler Lie algebras) from ${cal O}$-operators is provided. Moreover, by comparing left-symmetric bialgebras and Lie bialgebras, we observe that there is a clear analogue between them and, in particular, parakahler Lie groups correspond to Poisson-Lie groups in this sense.
n-ary algebras have played important roles in mathematics and mathematical physics. The purpose of this paper is to construct a deformation of Virasoro-Witt n-algebra based on an oscillator realization with two independent parameters (p, q) and investigate its n-Lie subalgebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا