ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of AlSb(001) and GaSb(001) Surfaces Under Extreme Sb-rich Conditions

165   0   0.0 ( 0 )
 نشر من قبل Seong-Gon Kim
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use density-functional theory to study the structure of AlSb(001) and GaSb(001) surfaces. Based on a variety of reconstruction models, we construct surface stability diagrams for AlSb and GaSb under different growth conditions. For AlSb(001), the predictions are in excellent agreement with experimentally observed reconstructions. For GaSb(001), we show that previously proposed model accounts for the experimentally observed reconstructions under Ga-rich growth conditions, but fails to explain the experimental observations under Sb-rich conditions. We propose a new model that has a substantially lower surface energy than all (nx5)-like reconstructions proposed previously and that, in addition, leads to a simulated STM image in better agreement with experiment than existing models. However, this new model has higher surface energy than some of (4x3)-like reconstructions, models with periodicity that has not been observed. Hence we conclude that the experimentally observed (1x5) and (2x5) structures on GaSb(001) are kinetically limited rather than at the ground state.



قيم البحث

اقرأ أيضاً

High-quality and impurity-free magnetite surfaces with (sqrt2xsqrt2)R45o reconstruction have been obtained for the Fe3O4(001) epitaxial films deposited on Fe(001). Based on atomically resolved STM images for both negative and positive sample polarity and Density Functional Theory calculations, a model of the magnetite (001) surface terminated with Fe ions forming dimers on the reconstructed (sqrt2xsqrt2)R45o octahedral iron layer is proposed.
We report an enhancement of the electron spin relaxation time (T1) in a (110) InAs/GaSb superlattice by more than an order of magnitude (25 times) relative to the corresponding (001) structure. The spin dynamics were measured using polarization sensi tive pump probe techniques and a mid-infrared, subpicosecond PPLN OPO. Longer T1 times in (110) superlattices are attributed to the suppression of the native interface asymmetry and bulk inversion asymmetry contributions to the precessional Dyakonov Perel spin relaxation process. Calculations using a nonperturbative 14-band nanostructure model give good agreement with experiment and indicate that possible structural inversion asymmetry contributions to T1 associated with compositional mixing at the superlattice interfaces may limit the observed spin lifetime in (110) superlattices. Our findings have implications for potential spintronics applications using InAs/GaSb heterostructures.
125 - Ye-Chuan Xu , Bang-Gui Liu 2008
We propose a two-dimensional phase-field-crystal model for the (2$times$1)-(1$times$1) phase transitions of Si(001) and Ge(001) surfaces. The dimerization in the 2$times$1 phase is described with a phase-field-crystal variable which is determined by solving an evolution equation derived from the free energy. Simulated periodic arrays of dimerization variable is consistent with scanning-tunnelling-microscopy images of the two dimerized surfaces. Calculated temperature dependence of the dimerization parameter indicates that normal dimers and broken ones coexist between the temperatures describing the charactristic temperature width of the phase-transition, $T_L$ and $T_H$, and a first-order phase transition takes place at a temperature between them. The dimerization over the whole temperature is determined. These results are in agreement with experiment. This phase-field-crystal approach is applicable to phase-transitions of other reconstructed surface phases, especially semiconductor $ntimes$1 reconstructed surface phases.
72 - T. Glaser 2020
Synthesis of organic bi-layers on silicon was realized by a combination of surface functionalization under ultra-high vacuum (UHV) conditions and solution-based click chemistry. The silicon (001) surface was prepared with a high degree of perfection in UHV and functionalized via chemoselective adsorption of ethinyl cyclopropyl cyclooctyne from the gas phase. A second organic layer was then coupled in acetonitrile via the copper-catalyzed alkyne azide click reaction. The samples were directly transferred from UHV via the vapour phase of the solvent into the solution of reactants and back to UHV without contact to ambient conditions. Each reaction step was monitored by means of X-ray photoelectron spectroscopy in UHV; the N 1s spectra clearly indicated the click reaction of the azide group in the two test molecules employed, i.e., methyl-subsituted benzylazide and azide substituted pyrene. In both cases, up to 50 - 60 % of the ethinyl cyclopropyl cyclooctyne molecules on the surface were reacted.
We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe$_3$O$_4$(001) bilayers grown on MgO(001) and Nb-SrTiO$_3$(001) substrates. We compare the results wit h those obtained on pure Fe$_3$O$_4$(001) thin films. It is found that the magnetite layers are oxidized and Fe$^{3+}$ dominates at the surfaces due to maghemite ($gamma$-Fe$_2$O$_3$) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe$_3$O$_4$. At the interface between NiO and Fe$_3$O$_4$ we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe$_2$O$_4$ interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45$^{circ}$ rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe$_3$O$_4$ films grown on Nb-SrTiO$_3$ exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا