ﻻ يوجد ملخص باللغة العربية
In broad astrophysical contexts of large-scale gravitational collapses and outflows and as a basis for various further astrophysical applications, we formulate and investigate a theoretical problem of self-similar MHD for a non-rotating polytropic gas of quasi-spherical symmetry permeated by a completely random magnetic field. We derive two coupled nonlinear MHD ordinary differential equations (ODEs), examine properties of the magnetosonic critical curve, obtain various asymptotic and global semi-complete similarity MHD solutions, and qualify the applicability of our results. Unique to a magnetized gas cloud, a novel asymptotic MHD solution for a collapsing core is established. Physically, the similarity MHD inflow towards the central dense core proceeds in characteristic manners before the gas material eventually encounters a strong radiating MHD shock upon impact onto the central compact object. Sufficiently far away from the central core region enshrouded by such an MHD shock, we derive regular asymptotic behaviours. We study asymptotic solution behaviours in the vicinity of the magnetosonic critical curve. Numerically, we construct global semi-complete similarity MHD solutions that cross the magnetosonic critical curve zero, one, and two times. For comparison, counterpart solutions in the case of an isothermal unmagnetized and magnetized gas flows are demonstrated in the present MHD framework at nearly isothermal and weakly magnetized conditions. For a polytropic index $gamma=1.25$ or a strong magnetic field, different solution behaviours emerge. In these cases, there exist semi-complete similarity solutions crossing the magnetosonic critical curve only once, and the MHD counterpart of expansion-wave collapse solution disappears.
We explore semi-complete self-similar solutions for the polytropic gas dynamics involving self-gravity under spherical symmetry, examine behaviours of the sonic critical curve, and present new asymptotic collapse solutions that describe `quasi-static
In the supercritical range of the polytropic indices $gammain(1,frac43)$ we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler-Poisson system. These solutions exhibit gravitational collapse in the sense
We use the Bianchi-I spacetime to study the local dynamics of a magnetized self-gravitating Fermi gas. The set of Einstein-Maxwell field equations for this gas becomes a dynamical system in a 4-dimensional phase space. We consider a qualitative study
The dynamics of a self-gravitating neutron gas in presence of a magnetic field is being studied taking the equation of state of a magnetized neutron gas obtained in a previous study [2]. We work in a Bianchi I spacetime characterized by a Kasner metr
A linear stability analysis has been performed onto a self-gravitating magnetized gas disk bounded by external pressure. The resulting dispersion relation is fully explained by three kinds of instability: a Parker-type instability driven by self-grav