ترغب بنشر مسار تعليمي؟ اضغط هنا

Embedded Stellar Populations towards Young Massive Star Formation Regions I. G305.2+0.2

80   0   0.0 ( 0 )
 نشر من قبل Steven Longmore N
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep, wide-field J, H and Ks images taken with IRIS2 on the Anglo Australian Telescope, towards the massive star formation region G305.2+0.2. Combined with 3.6, 4.5, 5.8 and 8.0 micron data from the GLIMPSE survey on the Spitzer Space Telescope, we investigate the properties of the embedded stellar populations. After removing contamination from foreground stars we separate the sources based on their IR colour. Strong extended emission in the GLIMPSE images hampers investigation of the most embedded sources towards the known sites of massive star formation. However, we find a sizeable population of IR excess sources in the surrounding region free from these completeness effects. Investigation reveals the recent star formation activity in the region is more widespread than previously known. Stellar density plots show the embedded cluster in the region, G305.24+0.204, is offset from the dust emission. We discuss the effect of this cluster on the surrounding area and argue it may have played a role in triggering sites of star formation within the region. Finally, we investigate the distribution of IR excess sources towards the cluster, in particular their apparent lack towards the centre compared with its immediate environs.

قيم البحث

اقرأ أيضاً

We present a detailed analysis of the star formation history (SFH) of three fields in M33 located ~ 4 - 6 visual scale lengths from its nucleus. These fields were imaged with the Advanced Camera for Surveys on the Hubble Space Telescope and reach ~ 2 .5 magnitudes below the red clump of core helium burning stars. The observed color-magnitude diagrams are modeled as linear combinations of individual synthetic populations with different ages and metallicities. To gain a better understanding of the systematic errors we have conducted the analysis with two different sets of stellar evolutionary tracks which we designate as Padova (Girardi et al. 2000) and Teramo (Pietrinferni et al. 2004). The precise details of the results depend on which tracks are used but we can make several conclusions that are fairly robust despite the differences. Both sets of tracks predict the mean age to increase and the mean metallicity to decrease with radius. Allowing age and metallicity to be free parameters and assuming star formation began ~ 14 Gyr ago, we find that the mean age of all stars and stellar remnants increases from ~ 6 Gyr to ~ 8 Gyr and the mean global metallicity decreases from ~ -0.7 to ~ -0.9. The fraction of stars formed by 4.5 Gyr ago increases from ~ 65% to ~ 80%. The mean star formation rate 80 - 800 Myr ago decreases from ~ 30% of the lifetime average to just ~ 5%. The random errors on these estimates are ~ 10%, 1.0 Gyr, and 0.1 dex. By comparing the results of the two sets of stellar tracks for the real data and for test populations with known SFH we have estimated the systematic errors to be 15%, 1.0 Gyr, and 0.2 dex. These do not include uncertainties in the bolometric corrections or variations in alpha-element abundance which deserve future study.
We have recently completed an observing program with the Australia Telescope Compact Array towards massive star formation regions traced by 6.7 GHz methanol maser emission. We found the molecular cores could be separated into groups based on their as sociation with/without methanol maser and 24 GHz continuum emission. Analysis of the molecular and ionised gas properties suggested the cores within the groups may be at different evolutionary stages. In this contribution we derive the column densities and temperatures of the cores from the NH3 emission and investigate if this can be used as an indicator of the relative evolutionary stages of cores in the sample. The majority of cores are well fit using single-temperature large velocity gradient models, and exhibit a range of temperatures from ~10 K to >200 K. Under the simple but reasonable assumption that molecular gas in the cores will heat up and become less quiescent with age due to feedback from the powering source(s), the molecular gas kinetic temperature combined with information of the core kinematics seems a promising probe of relative core age in the earliest evolutionary stages of massive star formation.
How high-mass stars form remains unclear currently. Calculation suggests that the radiation pressure of a forming star can halt spherical infall, preventing its further growth when it reaches 10 M$_{odot}$. Two major theoretical models on the further growth of stellar mass were proposed. One model suggests the mergence of less massive stellar objects, and the other is still through accretion but with the help of disk. Inflow motions are the key evidence of how forming stars further gain mass to build up massive stars. Recent development in technology has boosted the search of inflow motion. A number of high-mass collapse candidates were obtained with single dish observations, mostly showed blue profile. The infalling signatures seem to be more common in regions with developed radiation pressure than in younger cores, which opposes the theoretical prediction and is also very different from that of low mass star formation. Interferometer studies so far confirm such tendency with more obvious blue profile or inverse P Cygni profile. Results seem to favor the accretion model. However, the evolution tendency of the infall motion in massive star forming cores needs to be further explored. Direct evidence for monolithic or competitive collapse processes is still lack. ALMA will enable us to probe more detail of gravity process.
95 - James Schombert 2013
The luminosities, colors and Halpha emission for 429 HII regions in 54 LSB galaxies are presented. While the number of HII regions per galaxy is lower in LSB galaxies compared to star-forming irregulars and spirals, there is no indication that the si ze or luminosity function of HII regions differs from other galaxy types. The lower number of HII regions per galaxy is consistent with their lower total star formation rates. The fraction of total $L_{Halpha}$ contributed by HII regions varies from 10 to 90% in LSB galaxies (the rest of the H$alpha$ emission being associated with a diffuse component) with no correlation with galaxy stellar or gas mass. Bright HII regions have bluer colors, similar to the trend in spirals; their number and luminosities are consistent with the hypothesis that they are produced by the same HII luminosity function as spirals. Comparison with stellar population models indicates that the brightest HII regions in LSB galaxies range in cluster mass from a few $10^3 M_{sun}$ (e.g., $rho$ Oph) to globular cluster sized systems (e.g., 30 Dor) and that their ages are consistent with clusters from 2 to 15 Myrs old. The faintest HII regions are comparable to those in the LMC powered by a single O or B star. Thus, star formation in LSB galaxies covers the full range of stellar cluster mass.
Recent advances in our understanding of massive star formation have made clear the important role of protostellar disks in mediating accretion. Here we describe a simple, semi-analytic model for young, deeply embedded, massive accretion disks. Our ap proach enables us to sample a wide parameter space of stellar mass and environmental variables, providing a means to make predictions for a variety of sources that next generation telescopes like ALMA and the EVLA will observe. Moreover we include, at least approximately, multiple mechanisms for angular momentum transport, a comprehensive model for disk heating and cooling, and a realistic estimate for the angular momentum in the gas reservoir. We make predictions for the typical sizes, masses, and temperatures of the disks, and describe the role of gravitational instabilities in determining the binarity fraction and upper mass cut-off.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا