ﻻ يوجد ملخص باللغة العربية
Cells store information in DNA and in stable programs of gene expression, which thereby implement forms of long-term cellular memory. Cells must also possess short-term forms of information storage, implemented post-translationally, to transduce and interpret external signals. CaMKII, for instance, is thought to implement a one-bit (bistable) short-term memory required for learning at post-synaptic densities. Here we show by mathematical analysis that multisite protein phosphorylation, which is ubiquitous in all eukaryotic signalling pathways, exhibits multistability for which the maximal number of steady states increases with the number of sites. If there are n sites, the maximal information storage capacity is at least log_2 (n+2)/2 bits when n is even and log_2 (n+1)/2 bits when n is odd. Furthermore, when substrate is in excess, enzyme saturation together with an alternating low/high pattern in the site-specific relative catalytic efficiencies, enriches for multistability. That is, within physiologically plausible ranges for parameters, multistability becomes more likely than monostability. We discuss the experimental challenges in pursuing these predictions and in determining the biological role of short-term information storage.
Multisite phosphorylation plays an important role in regulating switchlike protein activity and has been used widely in mathematical models. With the development of new experimental techniques and more molecular data, molecular phosphorylation proces
This work investigates the emergence of oscillations in one of the simplest cellular signaling networks exhibiting oscillations, namely, the dual-site phosphorylation and dephosphorylation network (futile cycle), in which the mechanism for phosphoryl
Fission yeast G2/M transition is regulated by a biochemical reaction networks which contains four components: Cdc13, Cdc2, Wee1, and Cdc25. This circuit is characterized by the ultrasensitive responses of Wee1 or Cdc25 to Cdc13/Cdc2 activity, and the
Protein phosphorylation cycles are important mechanisms of the post translational modification of a protein and as such an integral part of intracellular signaling and control. We consider the sequential phosphorylation and dephosphorylation of a pro
The living cell is an open nonequilibrium biochemical system, where ATP hydrolysis serves as the energy source for a wide range of intracellular processes including the assurance for decision-making. In the fission yeast cell cycle, the transition fr