Using Moutard transformations we show how explicit examples of two-dimensional Schroedinger operators with fast decaying potential and multidimensional $L_2$-kernel may be constructed
We study the spectrum and dynamics of a one-dimensional discrete Dirac operator in a random potential obtained by damping an i.i.d. environment with an envelope of type $n^{-alpha}$ for $alpha>0$. We recover all the spectral regimes previously obtain
ed for the analogue Anderson model in a random decaying potential, namely: absolutely continuous spectrum in the super-critical region $alpha>frac12$; a transition from pure point to singular continuous spectrum in the critical region $alpha=frac12$; and pure point spectrum in the sub-critical region $alpha<frac12$. From the dynamical point of view, delocalization in the super-critical region follows from the RAGE theorem. In the critical region, we exhibit a simple argument based on lower bounds on eigenfunctions showing that no dynamical localization can occur even in the presence of point spectrum. Finally, we show dynamical localization in the sub-critical region by means of the fractional moments method and provide control on the eigenfunctions.
We study semigroups generated by two-dimensional relativistic Hamiltonians with magnetic field. In particular, for compactly supported radial magnetic field we show how the long time behaviour of the associated heat kernel depends on the flux of the
field. Similar questions are addressed for Aharonov-Bohm type magnetic field.
We consider a one-dimensional continuum Anderson model where the potential decays in average like $|x|^{-alpha}$, $alpha>0$. We show dynamical localization for $0<alpha<frac12$ and provide control on the decay of the eigenfunctions.
We consider a one-dimensional Anderson model where the potential decays in average like $n^{-alpha}$, $alpha>0$. This simple model is known to display a rich phase diagram with different kinds of spectrum arising as the decay rate $alpha$ varies. W
e review an article of Kiselev, Last and Simon where the authors show a.c. spectrum in the super-critical case $alpha>frac12$, a transition from singular continuous to pure point spectrum in the critical case $alpha=frac12$, and dense pure point spectrum in the sub-critical case $alpha<frac12$. We present complete proofs of the cases $alphagefrac12$ and simplify some arguments along the way. We complement the above result by discussing the dynamical aspects of the model. We give a simple argument showing that, despite of the spectral transition, transport occurs for all energies for $alpha=frac12$. Finally, we discuss a theorem of Simon on dynamical localization in the sub-critical region $alpha<frac12$. This implies, in particular, that the spectrum is pure point in this regime.
We get a generalization of Kreins formula -which relates the resolvents of different selfadjoint extensions of a differential operator with regular coefficients- to the non-regular case $A=-partial_x^2+( u^2-1/4)/x^2+V(x)$, where $0< u<1$ and $V(x)$
is an analytic function of $xinmathbb{R}^+$ bounded from below. We show that the trace of the heat-kernel $e^{-tA}$ admits a non-standard small-t asymptotic expansion which contains, in general, integer powers of $t^ u$. In particular, these powers are present for those selfadjoint extensions of $A$ which are characterized by boundary conditions that break the local formal scale invariance at the singularity.
I. A. Taimanov
,S. P. Tsarev
.
(2007)
.
"Two-dimensional Schroedinger operators with fast decaying potential and multidimensional $L_2$-kernel"
.
Iskander A. Taimanov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا