ترغب بنشر مسار تعليمي؟ اضغط هنا

Products of Brauer Severi surfaces

185   0   0.0 ( 0 )
 نشر من قبل Amit Hogadi
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Amit Hogadi




اسأل ChatGPT حول البحث

Let ${P_i}_{1 leq i leq r}$ and ${Q_i}_{1 leq i leq r}$ be two collections of Brauer Severi surfaces (resp. conics) over a field $k$. We show that the subgroup generated by the $P_is$ in $Br(k)$ is the same as the subgroup generated by the $Q_is$ iff $Pi P_i $ is birational to $Pi Q_i$. Moreover in this case $Pi P_i$ and $Pi Q_i$ represent the same class in $M(k)$, the Grothendieck ring of $k$-varieties. The converse holds if $char(k)=0$. Some of the above implications also hold over a general noetherian base scheme.



قيم البحث

اقرأ أيضاً

244 - Xin Lu , Kang Zuo 2015
Let $X$ be a minimal surface of general type and maximal Albanese dimension with irregularity $qgeq 2$. We show that $K_X^2geq 4chi(mathcal O_X)+4(q-2)$ if $K_X^2<frac92chi(mathcal O_X)$, and also obtain the characterization of the equality. As a con sequence, we prove a conjecture of Manetti on the geography of irregular surfaces if $K_X^2geq 36(q-2)$ or $chi(mathcal O_X)geq 8(q-2)$, and we also prove a conjecture that surfaces of general type and maximal Albanese dimension with $K_X^2=4chi(mathcal O_X)$ are exactly the resolution of double covers of abelian surfaces branched over ample divisors with at worst simple singularities.
For a binary quartic form $phi$ without multiple factors, we classify the quartic K3 surfaces $phi(x,y)=phi(z,t)$ whose Neron-Severi group is (rationally) generated by lines. For generic binary forms $phi$, $psi$ of prime degree without multiple fact ors, we prove that the Neron-Severi group of the surface $phi(x,y)=psi(z,t)$ is rationally generated by lines.
145 - Bianca Viray 2012
Transcendental Brauer elements are notoriously difficult to compute. Work of Wittenberg, and later, Ieronymou, gives a method for computing 2-torsion transcendental classes on surfaces that have a genus 1 fibration with rational 2-torsion in the Jaco bian fibration. We use ideas from a descent paper of Poonen and Schaefer to remove this assumption on the rational 2-torsion.
Let $k$ be a field finitely generated over the finite field $mathbb F_p$ of odd characteristic $p$. For any K3 surface $X$ over $k$ we prove that the prime to $p$ component of the cokernel of the natural map $Br(k)to Br(X)$ is finite.
In this paper we extend the well known theorem of Angelo Lopez concerning the Picard group of the general space projective surface containing a given smooth projective curve, to the intermediate Neron-Severi group of a general hypersurface in any smooth projective variety.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا