ترغب بنشر مسار تعليمي؟ اضغط هنا

The Emerging Features of Bipolar Magnetic Regions during Solar Minima

480   0   0.0 ( 0 )
 نشر من قبل Wen Bin Song
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar magnetic synoptic charts obtained by NSO/Kitt Peak and SOHO/MDI are analyzed for studying the appearance of bipolar magnetic regions (BMRs) during solar minima. As a result, we find the emergence of long-lived BMRs has three typical features. (1) BMRs emerging rates of the new cycles increase about 3 times faster than those of the old cycles decrease. (2) Two consecutive solar cycles have an overlapping period of near 10 Carrington rotations. During this very short overlapping time interval, BMRs of two cycles tend to concentrate in the same longitudes. (3) About 53% BMRs distribute with a longitudinal distance of 1/8 solar rotation. Such phenomenon suggests a longitudinal mode of m=8 existing during solar minima.



قيم البحث

اقرأ أيضاً

We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active regions. Functional dependence of polarity separation and maximum magnetic flux of an active region is in agreement with a simple model of flux emergence as the result of buoyancy forces. Our investigation did not reveal any strong dependence of emergence rate on twist properties of active regions.
357 - M. Svanda 2015
We study the magnetic flux carried by pores located outside active regions with sunspots and investigate their possible contribution to the reversal of the global magnetic field of the Sun. We find that they contain a total flux of comparable amplitu de to the total magnetic flux contained in polar caps. The pores located at distances of 40--100~Mm from the closest active region have systematically the correct sign to contribute to the polar cap reversal. These pores can predominantly be found in bipolar magnetic regions. We propose that during grand minima of solar activity, such a systematic polarity trend, akin to a weak magnetic (Babcock-Leighton-like) source term could still be operating but was missed by the contemporary observers due to the limited resolving power of their telescopes.
We propose that the flux-rope $Omega$ loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the $Omega$-loops size from initially-horizontal magnetic field ingested through the cells bottom. This idea is based on (1) observed characteristics of BMRs of all spans ($sim$ 1000 km to $sim$ 200,000 km), (2) a well-known simulation of the production of a BMR by a supergranule-size convection cell from horizontal field placed at cell bottom, and (3) a well-known convection-zone simulation. From the observations and simulations, we (1) infer that the strength of the field ingested by the biggest convection cells (giant cells) to make the biggest BMR $Omega$ loops is $sim$ 10$^3$ G, (2) plausibly explain why the span and flux of the biggest observed BMRs are $sim$ 200,000 km and $sim$ 10$^{22}$ Mx, (3) suggest how giant cells might also make failed-BMR $Omega$ loops that populate the upper convection zone with horizontal field, from which smaller convection cells make BMR $Omega$ loops of their size, (4) suggest why sunspots observed in a sunspot cycles declining phase tend to violate the hemispheric helicity rule, and (5) support a previously-proposed amended Babcock scenario for the sunspot cycles dynamo process. Because the proposed convection-based heuristic model for making a sunspot-BMR $Omega$ loop avoids having $sim$ 10$^5$ G field in the initial flux rope at the bottom of the convection zone, it is an appealing alternative to the present magnetic-buoyancy-based standard scenario and warrants testing by high-enough-resolution giant-cell magnetoconvection simulations.
The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.
The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected int o the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux. We used the SWAMIS feature tracking code to understand how nearly 20000 detected magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously-detected flux so that it is too small and too weak to be detected. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 h, is 3 times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا