ﻻ يوجد ملخص باللغة العربية
Solar magnetic synoptic charts obtained by NSO/Kitt Peak and SOHO/MDI are analyzed for studying the appearance of bipolar magnetic regions (BMRs) during solar minima. As a result, we find the emergence of long-lived BMRs has three typical features. (1) BMRs emerging rates of the new cycles increase about 3 times faster than those of the old cycles decrease. (2) Two consecutive solar cycles have an overlapping period of near 10 Carrington rotations. During this very short overlapping time interval, BMRs of two cycles tend to concentrate in the same longitudes. (3) About 53% BMRs distribute with a longitudinal distance of 1/8 solar rotation. Such phenomenon suggests a longitudinal mode of m=8 existing during solar minima.
We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active
We study the magnetic flux carried by pores located outside active regions with sunspots and investigate their possible contribution to the reversal of the global magnetic field of the Sun. We find that they contain a total flux of comparable amplitu
We propose that the flux-rope $Omega$ loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the $Omega$-loops size from initially-horizontal magnetic field ingested through the cells bottom. This idea is based
The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been
The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected int