ترغب بنشر مسار تعليمي؟ اضغط هنا

Bursty stellar populations and obscured AGN in galaxy bulges

144   0   0.0 ( 0 )
 نشر من قبل Vivienne Wild
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vivienne Wild




اسأل ChatGPT حول البحث

[Abridged] We investigate trends between the recent star formation history and black hole growth in galaxy bulges in the Sloan Digital Sky Survey (SDSS). The galaxies lie at 0.01<z<0.07 where the fibre aperture covers only the central 0.6-4.0kpc diameter of the galaxy. We find strong trends between black hole growth, as measured by dust-attenuation-corrected OIII luminosity, and the recent star formation history of the bulges. We conclude that our results support the popular hypothesis for black hole growth occurring through gas inflow into the central regions of galaxies, followed by a starburst and triggering of the AGN. However, while this is a significant pathway for the growth of black holes, it is not the dominant one in the present-day Universe. More unspectacular processes are apparently responsible for the majority of this growth. In order to arrive at these conclusions we have developed a set of new high signal-to-noise ratio (SNR) optical spectral indicators, designed to allow a detailed study of stellar populations which have undergone recent enhanced star formation. Working in the rest-frame wavelength range 3750-4150AA, ideally suited to many recent and ongoing spectroscopic surveys at low and high redshift, the first two indices are equivalent to the previously well studied 4000AA break strength and Hdelta equivalent width. The primary advantage of this new method is a greatly improved SNR for the latter index, allowing the present study to use spectra with SNR-per-pixel as low as 8.



قيم البحث

اقرأ أيضاً

We present a multi-component structural analysis of the internal structure of $1074$ high redshift massive galaxies at $1<z<3$ from the CANDELS HST Survey. In particular we examine galaxies best-fit by two structural components, and thus likely formi ng discs and bulges. We examine the stellar mass, star formation rates, and colours of both the inner `bulge and outer `disc components for these systems using SED information from the resolved ACS+WFC3 HST imaging. We find that the majority of both inner and outer components lie in the star-forming region of UVJ space ($68$ and $90$ per cent respectively). However, the inner portions, or the likely forming bulges, are dominated by dusty star formation. Furthermore, we show that the outer components of these systems have a higher star formation rate than their inner regions, and the ratio of star formation rate between `disc and `bulge increases at lower redshifts. Despite the higher star formation rate of the outer component, the stellar mass ratio of inner to outer component remains constant through this epoch. This suggests that there is mass transfer from the outer to inner components for typical two component forming systems, thus building bulges from disks. Finally, using Chandra data we find that the presence of an AGN is more common in both $1$-component spheroid-like galaxies and $2$-component systems ($13pm3$ and $11pm2$ per cent) than in $1$-component disc-like galaxies ($3pm1$ per cent), demonstrating that the formation of a central inner-component likely triggers the formation of central massive black holes in these galaxies.
We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performin g a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a S`ersic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the H{beta}, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg 2 and Fe line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total {alpha}/Fe enhancement of the stellar population in the centre and at the radius where the bulge gives the same contribution to the total surface brightness as the remaining components are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display super-solar {alpha}/Fe enhancement, no gradient in age and negative gradients of metallicity and {alpha}/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.
This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.
116 - S. C. Trager OCIW 1998
We present first results from an on-going survey of the stellar populations of the bulges and inner disks of spirals at various points along the Hubble sequence. In particular, we are investigating the hypotheses that bulges of early-type spirals are akin to (and may in fact originally have been) intermediate-luminosity ellipticals while bulges of late-type spirals are formed from dynamical instabilities in their disks. Absorption-line spectroscopy of the central regions of Sa--Sd spirals is combined with stellar population models to determine integrated mean ages and metallicities. These ages and metallicities are used to investigate stellar population differences both between the bulges and inner disks of these spirals and between bulges and ellipticals in an attempt to place observational constraints on the formation mechanisms of spiral bulges.
159 - T.V. Ricci 2010
NGC 7582 is defined as a Starburst/AGN galaxy, since its optical and X-Ray spectra reveal both characteristics. In this work, we show the results of a stellar population modeling in a datacube taken with the Gemini South telescope. We found that $sim $ 90% of the light in the field of view is emitted by stars that are less than 1 billion years old. A strong burst occurred about $sim$ 6 million years ago and has nearly solar metallicity. We also found a Wolf-Rayet cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا