ترغب بنشر مسار تعليمي؟ اضغط هنا

Implicit function density computation

36   0   0.0 ( 0 )
 نشر من قبل Kerry Soileau
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

If two random variables X and A are functionally related via f(X)=A for some strictly monotone continuously differentiable function f:R->R, the distribution of X may easily be computed from the distribution of A.

قيم البحث

اقرأ أيضاً

192 - N. A. Carella 2021
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ varphi(n)$ be the Euler totient function. The result $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+Oleft ( x(log x)^{2/3}(loglog x)^{1/3}right ) $ was proved very recently. This note presents a short elementary proof, and sharpen the error term to $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+O(x) $. In addition, the first proofs of the asymptotics formulas for the finite sums $ sum_{nleq x}psi([x/n])=(15/pi^2)xlog x+O(xlog log x) $, and $ sum_{nleq x}sigma([x/n])=(pi^2/6)xlog x+O(x log log x) $ are also evaluated here.
218 - N. A. Carella 2021
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ sigma(n)$ be the sum of divisors function. This note presents the first proof of the asymptotic formula for the average order $ sum_{pleq x}sigma([x/p])=c_ 0xlog log x+O(x) $ over the primes, where $c_0>0$ is a constant. More generally, $ sum_{pleq x}sigma([x/(p+a)])=c_0xlog log x+O(x) $ for any fixed integer $a$.
In this paper, some sufficient conditions for the differentiability of the $n$-variable real-valued function are obtained, which are given based on the differentiability of the $n-1$-variable real-valued function and are weaker than classical conditions.
82 - Yuanyou Cheng 2010
The Riemann hypothesis, conjectured by Bernhard Riemann in 1859, claims that the non-trivial zeros of $zeta(s)$ lie on the line $Re(s) =1/2$. The density hypothesis is a conjectured estimate $N(lambda, T) =Obigl(Tsp{2(1-lambda) +epsilon} bigr)$ for a ny $epsilon >0$, where $N(lambda, T)$ is the number of zeros of $zeta(s)$ when $Re(s) gelambda$ and $0 <Im(s) le T$, with $1/2 le lambda le 1$ and $T >0$. The Riemann-von Mangoldt Theorem confirms this estimate when $lambda =1/2$, with $Tsp{epsilon}$ being replaced by $log T$. In an attempt to transform Backlunds proof of the Riemann-von Mangoldt Theorem to a proof of the density hypothesis by convexity, we discovered a different approach utilizing an auxiliary function. The crucial point is that this function should be devised to be symmetric with respect to $Re(s) =1/2$ and about the size of the Euler Gamma function on the right hand side of the line $Re(s) =1/2$. Moreover, it should be analytic and without any zeros in the concerned region. We indeed found such a function, which we call pseudo-Gamma function. With its help, we are able to establish a proof of the density hypothesis. Actually, we give the result explicitly and our result is even stronger than the original density hypothesis, namely it yields $N(lambda, T) le 8.734 log T$ for any $1/2 < lambda < 1$ and $Tge 2445999554999$.
129 - Jorma Jormakka 2020
In 2008 I thought I found a proof of the Riemann Hypothesis, but there was an error. In the Spring 2020 I believed to have fixed the error, but it cannot be fixed. I describe here where the error was. It took me several days to find the error in a ca reful checking before a possible submission to a payable review offered by one leading journal. There were three simple lemmas and one simple theorem, all were correct, yet there was an error: what Lemma 2 proved was not exactly what Lemma 3 needed. So, it was the connection of the lemmas. This paper came out empty, but I have found a different proof of the Riemann Hypothesis and it seems so far correct. In the discussion at the end of this paper I raise a matter that I think is of importance to the review process in mathematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا