ترغب بنشر مسار تعليمي؟ اضغط هنا

The contribution of Oxygen-Neon white dwarfs to the MACHO content of the Galactic Halo

381   0   0.0 ( 0 )
 نشر من قبل Santiago Torres
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. White dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy. However, several constraints on the role played by regular carbon-oxygen white dwarfs exist. Massivewhite dwarfs are thought to be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is larger than those of typical carbon-oxygen white dwarfs and they fade to invisibility in short timescales. Consequently, they constitute a good candidate for explaining the microlensing results. Here, we examine in detail this hypothesis by using the most recent and up-to-date cooling tracks for massive white dwarfs and a Monte Carlo simulator which takes into account the most relevant Galactic inputs. We find that oxygen-neon white dwarfs cannot account for a substantial fraction of the microlensing depth towards the LMC, independently of the adopted initial mass function, although some microlensing events could be due to oxygen--neon white dwarfs. The white dwarf population contributes at most a 5% to the mass of the Galactic halo.



قيم البحث

اقرأ أيضاً

Accretion induced collapse (AIC) may be responsible for the formation of some interesting neutron star binaries, e.g., millisecond pulsars, intermediate-mass binary pulsars, etc. It has been suggested that oxygen-neon white dwarfs (ONe WDs) can incre ase their mass to the Chandrasekhar limit by multiple He-shell flashes, leading to AIC events. However, the properties of He-shell flashes on the surface of ONe WDs are still not well understood. In this article, we aim to study He-shell flashes on the surface of ONe WDs in a systematic approach. We investigated the long-term evolution of ONe WDs accreting He-rich material with various constant mass-accretion rates by time-dependent calculations with the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), in which the initial ONe WD masses range from 1.1 to 1.35 M . We found that the mass-retention efficiency increases with the ONe WD mass and the mass-accretion rate, whereas both the nova cycle duration and the ignition mass decrease with the ONe WD mass and the mass-accretion rate. We also present the nuclear products in different accretion scenarios. The results presented in this article can be used in the future binary population synthesis studies of AIC events.
The evolution of a star of initial mass 10 $M_{odot}$, and metallicity $Z = 0.02$ in a Close Binary System (CBS) is followed from its main sequence until an ONe degenerate remnant forms. Restrictions have been made on the characteristics of the compa nion as well as on the initial orbital parameters in order to avoid the occurrence of reversal mass transfer before carbon is ignited in the core. The system undergoes three mass loss episodes. The first and second ones are a consequence of a case B Roche lobe overflow. During the third mass loss episode stellar winds may play a role comparable to, or even more important than Roche lobe overflow. In this paper, we extend the previously existing calculations of stars of intermediate mass belonging to close binary systems by following carefully the carbon burning phase of the primary component. We also propose different possible outcomes for our scenario and discuss the relevance of our findings. In particular, our main result is that the resulting white dwarf component of mass $1.1 M_odot$ more likely has a core composed of oxygen and neon, surrounded by a mantle of carbon-oxygen rich material. The average abundances of the oxygen-neon rich core are $X({rm O}^{16})=0.55$, $X({rm Ne}^{20})=0.28$, $X({rm Na}^{23})=0.06$ and $X({rm Mg}^{24})=0.05$. This result has important consequences for the Accretion Induced Collapse scenario. The average abundances of the carbon-oxygen rich mantle are $X({rm O}^{16})=0.55$, and $X({rm C}^{12})=0.43$. The existence of this mantle could also play a significant role in our understanding of cataclysmic variables.
We use 156 044 white dwarf candidates with $geq5sigma$ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; $(sigma_U,sigma_V,sigma_W) = (30.8, 23.9, 20.0)$ km s$^{-1}$. We identify 142 obje cts that are inconsistent with disc membership at the $>5sigma$ level. This is the largest sample of field halo white dwarfs identified to date. We perform a detailed model atmosphere analysis using optical and near-infrared photometry and parallaxes to constrain the mass and cooling age of each white dwarf. The white dwarf cooling ages of our targets range from 7 Myr for J1657+2056 to 10.3 Gyr for J1049-7400. The latter provides a firm lower limit of 10.3 Gyr for the age of the inner halo based on the well-understood physics of white dwarfs. Including the pre-white dwarf evolutionary lifetimes, and limiting our sample to the recently formed white dwarfs with cooling ages of $<500$ Myr, we estimate an age of $10.9 pm 0.4$ Gyr (internal errors only) for the Galactic inner halo. The coolest white dwarfs in our sample also give similar results. For example, J1049-7400 has a total age of 10.9-11.1 Gyr. Our age measurements are consistent with other measurements of the age of the inner halo, including the white dwarf based measurements of the globular clusters M4, NGC 6397, and 47 Tuc.
The EROS-2 project was designed to test the hypothesis that massive compact halo objects (the so-called ``machos) could be a major component of the dark matter halo of the Milky Way galaxy. To this end, EROS-2 monitored over 6.7 years $33times10^6$ s tars in the Magellanic clouds for microlensing events caused by such objects. In this work, we use only a subsample of $7times10^6$ bright stars spread over $84 deg^2$ of the LMC and $9 deg^2$ of the SMC. The strategy of using only bright stars helps to discriminate against background events due to variable stars and allows a simple determination of the effects of source confusion (blending). The use of a large solid angle makes the survey relatively insensitive to effects that could make the optical depth strongly direction dependent. Using this sample of bright stars, only one candidate event was found, whereas $sim39$ events would have been expected if the Halo were entirely populated by objects of mass $Msim0.4M_{odot}$. Combined with the results of EROS-1, this implies that the optical depth toward the Large Magellanic Cloud (object{LMC}) due to such lenses is $tau<0.36times10^{-7}$ (95%CL), corresponding to a fraction of the halo mass of less than 8%. This optical depth is considerably less than that measured by the MACHO collaboration in the central region of the LMC. More generally, machos in the mass range $0.6times10^{-7}M_odot<M<15M_{odot}$ are ruled out as the primary occupants of the Milky Way Halo.
129 - Ralf Napiwotzki 2009
The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial-mass-function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lions share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا