ترغب بنشر مسار تعليمي؟ اضغط هنا

Carrier-mediated magnetoelectricity in complex oxide heterostructures

301   0   0.0 ( 0 )
 نشر من قبل Nicola A. Spaldin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While tremendous success has been achieved to date in creating both single phase and composite magnetoelectric materials, the quintessential electric-field control of magnetism remains elusive. In this work, we demonstrate a linear magnetoelectric effect which arises from a novel carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO$_3$/SrTiO$_3$ interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behavior, the interface displays a spatial coexistence of magnetism and dielectric polarization suggesting a route to a new type of interfacial multiferroic.



قيم البحث

اقرأ أيضاً

Ferroelectric field-effect doping has emerged as a powerful approach to manipulate the ground state of correlated oxides, opening the door to a new class of field-effect devices. However, this potential is not fully exploited so far, since the size o f the field-effect doping is generally much smaller than expected. Here we study the limiting factors through magneto-transport, scanning transmission electron and piezo-response force microscopy in ferroelectric/superconductor (YBa2Cu3O7-{delta} /BiFeO3) heterostructures, a model system showing very strong field-effects. Still, we find that they are limited in the first place by an incomplete ferroelectric switching. This can be explained by the existence of a preferential polarization direction set by the atomic terminations at the interface. More importantly, we also find that the field-effect carrier doping is accompanied by a strong modulation of the carrier mobility. Besides making quantification of field-effects via Hall measurements not straightforward, this finding suggests that ferroelectric poling produces structural changes (e.g. charged defects or structural distortions) in the correlated oxide channel. Those findings have important consequences for the understanding of ferroelectric field-effects and for the strategies to further enhance them.
Material properties depend sensitively on picometer scale atomic displacements introduced by local chemical fluctuations. Direct real-space, high spatial-resolution measurements of this compositional variation and corresponding distortion can provide new insights into materials behavior at the atomic scale. Using aberration corrected scanning transmission electron microscopy combined with advanced imaging methods, we observed atom column specific, picometer-scale displacements induced by local chemistry in a complex oxide solid solution. Displacements predicted from density functional theory were found to correlate with the observed experimental trends. Further analysis of bonding and charge distribution were used to clarify the mechanisms responsible for the detected structural behavior. By extending the experimental electron microscopy measurements to previously inaccessible length scales, we identified correlated atomic displacements linked to bond differences within the complex oxide structure.
Trirutile-type LiFe$_2$F$_6$ is a charge-ordered material with Fe$^{2+}$/Fe$^{3+}$ configuration. Here its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe$_2$F$_6$ can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effect and desirable function.
80 - Y. Shao , S. A. Solin , 2006
For applications to sensor design, the product nxmu of the electron density n and the mobility mu is a key parameter to be optimized for enhanced device sensitivity. We model the carrier mobility in a two dimensional electron gas (2DEG) layer develop ed in a delta-doped heterostructure. The subband energy levels, electron wave functions, and the band-edge profile are obtained by numerically solving the Schrodinger and Poisson equations self-consistently. The electron mobility is calculated by including contributions of scattering from ionized impurities, the background neutral impurities, the deformation potential acoustic phonons, and the polar optical phonons. We calculate the dependencies of nxmu on temperature, spacer layer thickness, doping density, and the quantum well thickness. The model is applied to delta-doped quantum well heterostructures of AlInSb-InSb. At low temperature, mobilities as high as 1.3x10^3 m^2/Vs are calculated for large spacer layers (400 A) and well widths (400 A). The corresponding room temperature mobility is 10 m^2/Vs. The dependence of nxmu shows a maximum for a spacer thickness of 300 A for higher background impurity densities while it continues to increase monotonically for lower background impurity densities; this has implications for sensor design.
One of the most fundamental phenomena and a reminder of the electrons relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction, hardly discernible in experiment. Interfac ing a ferroelectric, BaTiO$_3$, and a heavy 5$d$ metal with a large spin-orbit coupling, Ba(Os,Ir)O$_3$, we show that giant Rashba spin splittings are indeed possible and even fully controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, also induces a large Os-O distortion. The BaTiO$_3$/BaOsO$_3$ heterostructure is hence the ideal test station for studying the fundamentals of the Rashba effect. It allows intriguing application such as the Datta-Das transistor to operate at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا