ﻻ يوجد ملخص باللغة العربية
We explore how the behavior of galaxy cluster scaling relations are affected by flux-limited selection biases and intrinsic covariance among observable properties. Our models presume log-normal covariance between luminosity (L) and temperature (T) at fixed mass (M), centered on evolving, power-law mean relations as a function of host halo mass. Selection can mimic evolution; the lm and lt relations from shallow X-ray flux-limited samples will deviate from mass-limited expectations at nearly all scales while the relations from deep surveys ($10^{-14} cgsflux$) become complete, and therefore unbiased, at masses above $sims 2 times 10^{14} hinv msol$. We derive expressions for low-order moments of the luminosity distribution at fixed temperature, and show that the slope and scatter of the lt relation observed in flux-limited samples is sensitive to the assumed lt correlation coefficient. In addition, lt covariance affects the redshift behavior of halo counts and mean luminosity in a manner that is nearly degenerate with intrinsic population evolution.
We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) dataset. We focus on a sub-sample of 179 clusters at redshift z~0.11, with 3.2e14M_sun
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations ar
(Abridged) This is the second in a series of papers in which we derive simultaneous constraints on cosmology and X-ray scaling relations using observations of massive, X-ray flux-selected galaxy clusters. The data set consists of 238 clusters drawn f
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millen
All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~ 1600