ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra High Energy Cosmic Rays Diffusion in an Expanding Universe

35   0   0.0 ( 0 )
 نشر من قبل Roberto Aloisio
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the solution of the diffusion equation for Ultra-High Energy Cosmic Rays in the general case of an expanding universe, comparing it with the well known Syrovatsky solution obtained in the more restrictive case of a static universe. The formal comparison of the two solutions with all parameters being fixed identically reveals an appreciable discrepancy. This discrepancy is less important if in both models a different set of best-fit parameters is used.

قيم البحث

اقرأ أيضاً

155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi on of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
134 - Todor Stanev 2010
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Flys Eye and the Southern Auger Observatory. The current results are somewhat contra dictory and raise interesting questions about the origin and character of these particles.
187 - Todor Stanev 2008
We briefly describe the energy loss processes of ultrahigh energy protons, heavier nuclei and gamma rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic ray energy spectrum in propagation by the energy loss processes and the charged cosmic ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh energy cosmic rays goes into gamma rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.
A fundamental question that can be answered in the next decade is: WHAT IS THE ORIGIN OF THE HIGHEST ENERGY COSMIC PARTICLES? The discovery of the sources of the highest energy cosmic rays will reveal the workings of the most energetic astrophysical environments in the recent universe. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or generated around supermassive black holes in active galactic nuclei. In addition to beginning a new era of high-energy astrophysics, the study of ultra-high energy cosmic rays will constrain the structure of the Galactic and extragalactic magnetic fields. The propagation of these particles from source to Earth also probes the cosmic background radiation and gives insight into particle interactions at orders of magnitude higher energy than can be achieved in terrestrial laboratories. Next generation observatories designed to study the highest energy cosmic rays will have unprecedented sensitivity to ultra-high energy photons and neutrinos, which will further illuminate the workings of the universe at the most extreme energies. For this challenge to be met during the 2010-2020 decade, a significant increase in the integrated exposure to cosmic rays above 6 1019 eV will be necessary. The technical capabilities for answering this open question are at hand and the time is ripe for exploring Charged Particle Astronomy.
We develop a model for explaining the data of Pierre Auger Observatory (Auger) for Ultra High Energy Cosmic Rays (UHECR), in particular, the mass composition being steadily heavier with increasing energy from 3 EeV to 35 EeV. The model is based on th e proton-dominated composition in the energy range (1 - 3) EeV observed in both Auger and HiRes experiments. Assuming extragalactic origin of this component, we argue that it must disappear at higher energies due to a low maximum energy of acceleration, E_p^{max} sim (4 - 10) EeV. Under an assumption of rigidity acceleration mechanism, the maximum acceleration energy for a nucleus with the charge number Z is ZE_p^{max}, and the highest energy in the spectrum, reached by Iron, does not exceed (100 - 200) EeV. The growth of atomic weight with energy, observed in Auger, is provided by the rigidity mechanism of acceleration, since at each energy E=ZE_p^{max} the contribution of nuclei with Z < Z vanishes. The described model has disappointing consequences for future observations in UHECR: Since average energies per nucleon for all nuclei are less than (2 - 4) EeV, (i) pion photo-production on CMB photons in extragalactic space is absent; (ii) GZK cutoff in the spectrum does not exist; (iii) cosmogenic neutrinos produced on CMBR are absent; (iv) fluxes of cosmogenic neutrinos produced on infrared - optical background radiation are too low for registration by existing detectors and projects. Due to nuclei deflection in galactic magnetic fields, the correlation with nearby sources is absent even at highest energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا