ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in Perseus: III. Outflows

93   0   0.0 ( 0 )
 نشر من قبل Jennifer Hatchell
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for outflows towards 51 submillimetre cores in Perseus. With consistently derived outflow properties from a large homogeneous dataset within one molecular cloud we can investigate further the mass dependence and time evolution of protostellar mass loss. Of the 51 cores, 37 show broad linewings indicative of molecular outflows. In 13 cases, the linewings could be due to confusion with neighbouring flows but 9 of those sources also have near-infrared detections confirming their protostellar nature. The total fraction of protostars in our sample is 65%. All but four outflow detections are confirmed as protostellar by Spitzer IR detections and only one Spitzer source has no outflow, showing that outflow maps at this sensitivity are equally good at identifying protostars as Spitzer. Outflow momentum flux correlates both with source luminosity and with core mass but there is considerable scatter even within this one cloud despite the homogeneous dataset. We fail to confirm the result of Bontemps et al. (1996) that Class I sources show lower momentum fluxes on average than Class 0 sources, with a KS test showing a significant probability that the momentum fluxes for both Class 0s and Class Is are drawn from the same distribution. We find that outflow power may not show a simple decline between the Class 0 to Class I stages. Our sample includes low momentum flux, low-luminosity Class 0 sources, possibly at a very early evolutionary stage. If the only mass loss from the core were due to outflows, cores would last for 10^5-10^8 years, longer than current estimates of 1.5-4 x 10^5 years for the mean lifetime for the embedded phase. Additional mechanisms for removing mass from protostellar cores may be necessary.


قيم البحث

اقرأ أيضاً

We present a complete survey of current star formation in the Perseus molecular cloud, made at 850 and 450 micron with SCUBA at the JCMT. Covering 3 deg^2, this submillimetre continuum survey for protostellar activity is second in size only to that o f rho Ophiuchus (Johnstone et al. 2004). Complete above 0.4 msun (5 sigma detection in a 14 beam), we detect a total of 91 protostars and prestellar cores. Of these, 80% lie in clusters, representative of star formation across the Galaxy. Two of the groups of cores are associated with the young stellar clusters IC348 and NGC1333, and are consistent with a steady or reduced star formation rate in the last 0.5 Myr, but not an increasing one. In Perseus, 40--60% of cores are in small clusters (< 50 msun) and isolated objects, much more than the 10% suggested from infrared studies. Complementing the dust continuum, we present a C^18O map of the whole cloud at 1 resolution. The gas and dust show filamentary structure of the dense gas on large and small scales, with the high column density filaments breaking up into clusters of cores. The filament mass per unit length is 5--11 msun per 0.1 pc. Given these filament masses, there is no requirement for substantial large scale flows along or onto the filaments in order to gather sufficient material for star formation. We find that the probability of finding a submillimetre core is a strongly increasing function of column density, as measured by C^18O integrated intensity, prob(core) proportional to I^3.0. This power law relation holds down to low column density, suggesting that there is no A_v threshold for star formation in Perseus, unless all the low-A_v submm cores can be demonstrated to be older protostars which have begun to lose their natal molecular cloud.
102 - R. Liseau 2004
The high spatial and spectral resolution offered by the new generation of infrared spectrometers at ESO is optimally suited for the observational study of outflows from young stellar objects. Models of interstellar shock waves would benefit from obse rvations of spectrally resolved line profiles. This applies also to attempts of measuring the rotation rates of jets very close to their driving source, which in general suffer considerable extinction. Observations of forbidden lines of ionised iron, [Fe II], could be used to accomplish this. The possibility of using rotational lines of molecular hydrogen, H2, to study the temporal evolution of outflow and disk gas is discussed. Similarly, high resolution IR observations of fluorescent water lines, H2O, open up the possibility to access outflow and disk water.
Working with the submillimetre continuum map of the Perseus molecular cloud (Hatchell et al. 2005), we aimed to determine the evolutionary stage of each submm core in Perseus, and investigate the lifetimes of these phases. We compile spectral energy distributions (SEDs) from 2MASS, Spitzer IRAC, Michelle, IRAS, SCUBA and Bolocam data. Sources are classified starless/protostellar on the basis of infrared and/or outflow detections and Class I/Class 0 on the basis of Tbol, Lbol/Lsmm and F_{3.6}/F_{850}. In order to investigate the dependence of these evolutionary indicators on mass, we construct radiative transfer models of Class 0 sources. Of the submm cores, 56/103 (54%) are confirmed protostars on the basis of infrared emission or molecular outflows. Of these, 22 are classified Class 1 on the basis of three evolutionary indicators, 34 are Class 0, and the remaining 47 are assumed starless. Perseus contains a much greater fraction of Class 0 sources than either Taurus or Rho Oph. Comparing the protostellar with the T Tauri population, the lifetime of the protostellar phase in Perseus is 0.25-0.67 Myr (95% confidence limits). The relative lifetime of the Class 0 and Class 1 phases are similar. We find that for the same source geometry but different masses, evolutionary indicators such as Tbol vary their value. It is therefore not always appropriate to use a fixed threshold to separate Class 0 and Class I sources. More modelling is required to determine the observational characteristics of the Class 0/Class I boundary over a range of masses.
We present results from our numerical simulations of collapsing massive molecular cloud cores. These numerical calculations show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr and confirm that the mass accretion during the collapsing phase is much more efficient than predicted by selfsimilar collapse solutions, dM/dt ~ c^3/G. We find that during protostellar assembly out of a non-turbulent core, the mass accretion reaches 20 - 100 c^3/G. Furthermore, we explore the self-consistent structure of bipolar outflows that are produced in our three dimensional magnetized collapse simulations. These outflows produce cavities out of which radiation pressure can be released, thereby reducing the limitations on the final mass of massive stars formed by gravitational collapse. Additional enhancement of the mass accretion rate comes from accretion along filaments that are built up by supersonic turbulent motions. Our numerical calculations of collapsing turbulent cores result in mass accretion rates as high as 10^-2 Msol/yr.
Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simula tions of the formation of these outflows, considering the feedback from both the AGN and supernovae-driven winds. We find that a large-opening-angle AGN wind develops fountain structures that make the expanding gas to fall back. Furthermore, it exhausts the gas near the nuclear region, extinguishing star formation and accretion within a few 100.000 yr, which establishes the duty cycle of these outflows. The AGN wind accounts for the highest speed features in the outflow with velocities around 10.000 km s$^{-1}$ (as observed in UFOs), but these are not as cold and dense as required by observations of molecular outflows. The SNe-driven wind is the main responsible for the observed mass-loading of the outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا