ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenology of D-Brane Inflation with General Speed of Sound

260   0   0.0 ( 0 )
 نشر من قبل Hiranya V. Peiris
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hiranya V. Peiris




اسأل ChatGPT حول البحث

A characteristic of D-brane inflation is that fluctuations in the inflaton field can propagate at a speed significantly less than the speed of light. This yields observable effects that are distinct from those of single-field slow roll inflation, such as a modification of the inflationary consistency relation and a potentially large level of non-Gaussianities. We present a numerical algorithm that extends the inflationary flow formalism to models with general speed of sound. For an ensemble of D-brane inflation models parameterized by the Hubble parameter and the speed of sound as polynomial functions of the inflaton field, we give qualitative predictions for the key inflationary observables. We discuss various consistency relations for D-brane inflation, and compare the qualitative shapes of the warp factors we derive from the numerical models with analytical warp factors considered in the literature. Finally, we derive and apply a generalized microphysical bound on the inflaton field variation during brane inflation. While a large number of models are consistent with current cosmological constraints, almost all of these models violate the compactification constraint on the field range in four-dimensional Planck units. If the field range bound is to hold, then models with a detectable level of non-Gaussianity predict a blue scalar spectral index, and a tensor component that is far below the detection limit of any future experiment.


قيم البحث

اقرأ أيضاً

We study inflation with the Dirac-Born-Infeld (DBI) noncanonical scalar field in both the cold and warm scenarios. We consider the Anti-de Sitter warp factor $f(phi)=f_{0}/phi^{4}$ for the DBI inflation and check viability of the quartic potential $V (phi)=lambdaphi^{4}/4$ in light of the Planck 2015 observational results. In the cold DBI setting, we find that the prediction of this potential in the $r-n_s$ plane is in conflict with Planck 2015 TT,TE,EE+lowP data. This motivates us to focus on the warm DBI inflation with constant sound speed. We conclude that in contrary to the case of cold scenario, the $r-n_s$ result of warm DBI model can be compatible with the 68% CL constraints of Planck 2015 TT,TE,EE+lowP data in the intermediate and high dissipation regimes, whereas it fails to be observationally viable in the weak dissipation regime. Also, the prediction of this model for the running of the scalar spectral index $dn_s/dln k$ is in good agreement with the constraint of Planck 2015 TT,TE,EE+lowP data. Finally, we show that the warm DBI inflation can provide a reasonable solution to the swampland conjecture that challenges the de Sitter limit in the standard inflation.
77 - Lei-Hua Liu , Ai-Chen Li 2021
In this paper, we study the impact of non-trivial sound on the evolution of cosmological complexity in inflationary period. The vacuum state of curvature perturbation could be treated as squeezed states with two modes, characterized by the two most e ssential parameters: angle parameter $phi_k$ and squeezing parameter $r_k$. Through $Schrddot{o}dinger$ equation, one can obtain the corresponding evolution equation of $phi_k$ and $r_k$. Subsequently, the quantum circuit complexity between a squeezed vacuum state and squeezed states are evaluated in scalar curvature perturbation with a type of non-trivial sound speed. Our results reveal that the evolution of complexity at early times shows the rapid solution comparing with $c_S=1$, in which we implement the resonant sound speed with various values of $xi$. In these cases, it shows that the scrambling time will be lagged with non-vanishing $xi$. Further, our methodology sheds a new way of distinguishing various inflationary models.
We continue the study of mild transient reductions in the speed of sound of the adiabatic mode during inflation, of their effect on the primordial power spectrum and bispectrum, and of their detectability in the Cosmic Microwave Background (CMB). We focus on the regime of emph{moderately sharp} mild reductions in the speed of sound during uninterrupted slow-roll inflation, a theoretically well motivated and self-consistent regime that admits an effective single-field description. The signatures on the power spectrum and bispectrum were previously computed using a slow-roll Fourier transform (SRFT) approximation, and here we compare it with generalized slow-roll (GSR) and in-in methods, for which we derive new formulas that account for moderately sharp features. The agreement between them is excellent, and also with the power spectrum obtained from the numerical solution to the equation of motion. We show that, in this regime, the SRFT approximation correctly captures with simplicity the effect of higher derivatives of the speed of sound in the mode equation, and makes manifest the correlations between power spectrum and bispectrum features. In a previous paper we reported hints of these correlations in the Planck data and here we perform several consistency checks and further analyses of the best fits, such as polarization and local significance at different angular scales. For the data analysis, we show the excellent agreement between the CLASS and CAMB Boltzmann codes. Our results confirm that the theoretical framework is consistent, and they suggest that the predicted correlations are robust enough to be searched for in CMB and Large Scale Structure (LSS) surveys.
We report on a novel phenomenon of the resonance effect of primordial density perturbations arisen from a sound speed parameter with an oscillatory behavior, which can generically lead to the formation of primordial black holes in the early Universe. For a general inflaton field, it can seed primordial density fluctuations and their propagation is governed by a parameter of sound speed square. Once if this parameter achieves an oscillatory feature for a while during inflation, a significant non-perturbative resonance effect on the inflaton field fluctuations takes place around a critical length scale, which results in significant peaks in the primordial power spectrum. By virtue of this robust mechanism, primordial black holes with specific mass function can be produced with a sufficient abundance for dark matter in sizable parameter ranges.
We revisit the issue of gravitational contributions to soft masses in five-dimensional sequestered models. We point out that, unlike for the case of F-type supersymmetry breaking, for D-type breaking these effects generically give positive soft masse s squared for the sfermions. This drastically improves model building. We discuss the phenomenological implications of our result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا