ترغب بنشر مسار تعليمي؟ اضغط هنا

Validity of the Adiabatic Approximation

50   0   0.0 ( 0 )
 نشر من قبل Richard MacKenzie
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the validity of the adiabatic approximation, and in particular the reliability of what has been called the standard criterion for validity of this approximation. Recently, this criterion has been found to be insufficient. We will argue that the criterion is sufficient only when it agrees with the intuitive notion of slowness of evolution of the Hamiltonian. However, it can be insufficient in cases where the Hamiltonian varies rapidly but only by a small amount. We also emphasize the distinction between the adiabatic {em theorem} and the adiabatic {em approximation}, two quite different although closely related ideas.

قيم البحث

اقرأ أيضاً

195 - Meisheng Zhao , Jianda Wu 2011
Recently, the authors of Ref.1[arXiv:1004.3100] claimed that they have proven the traditional adiabatic condition is a necessary condition. Here, it is claimed that there are some mistakes and an artificial over-strong constraint in [1], making its result inconvincible.
44 - Kazuo Fujikawa 2007
Recently there have been some controversies about the criterion of the adiabatic approximation. It is shown that an approximate diagonalization of the effective Hamiltonian in the second quantized formulation gives rise to a reliable and unambiguous criterion of the adiabatic approximation. This is illustrated for the model of Marzlin and Sanders and a model related to the geometric phase which can be exactly diagonalized in the present sense.
50 - Pierre Gosselin 2010
We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adiabatic regime. In particular, we extend the notions of geometric magnetic and electric forces discovered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described by matrix valued quantum Hamiltonians. The results are illustrated by several physical relevant examples.
We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states, when driven through a region of small gap. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitio ns. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead here, we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times/fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times/slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counter-intuitive modification consists in crossing twice the region of small gap. Our findings are illustrated by several examples of driven closed and open quantum systems.
This paper is devoted to a generalisation of the quantum adiabatic theorem to a nonlinear setting. We consider a Hamiltonian operator which depends on the time variable and on a finite number of parameters and acts on a separable Hilbert space of whi ch we select a fixed basis. We study an evolution equation in which this Hamiltonian acts on the unknown vector, while depending on coordinates of the unknown vector in the selected basis, thus making the equation nonlinear. We prove existence of solutions to this equation and consider their asymptotics in the adiabatic regime, i.e. when the Hamiltonian is slowly varying in time. Under natural spectral hypotheses, we prove the existence of normalised time dependent vectors depending on the Hamiltonian only, called instantaneous nonlinear eigenvectors, and show the existence of solutions which remain close to these vectors, up to a rapidly oscillating phase, in the adiabatic regime. We first investigate the case of bounded operators and then exhibit a set of spectral assumptions under which the result extends to unbounded Hamiltonians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا