ﻻ يوجد ملخص باللغة العربية
Given a triangulation of a closed, oriented, irreducible, atoroidal 3-manifold every oriented, incompressible surface may be isotoped into normal position relative to the triangulation. Such a normal oriented surface is then encoded by non-negative integer weights, 14 for each 3-simplex, that describe how many copies of each oriented normal disc type there are. The Euler characteristic and homology class are both linear functions of the weights. There is a convex polytope in the space of weights, defined by linear equations given by the combinatorics of the triangulation, whose image under the homology map is the unit ball, B, of the Thurston norm. Applications of this approach include (1) an algorithm to compute B and hence the Thurston norm of any homology class, (2) an explicit exponential bound on the number of vertices of B in terms of the number of simplices in the triangulation, (3) an algorithm to determine the fibred faces of B and hence an algorithm to decide whether a 3-manifold fibres over the circle.
We present an overview of the study of the Thurston norm, introduced by W. P. Thurston in the seminal paper A norm for the homology of 3-manifolds (written in 1976 and published in 1986). We first review fundamental properties of the Thurston norm of
We show that the problem of determining whether a knot in the 3-sphere is non-trivial lies in NP. This is a consequence of the following more general result. The problem of determining whether the Thurston norm of a second homology class in a compact
Normal surface theory, a tool to represent surfaces in a triangulated 3-manifold combinatorially, is ubiquitous in computational 3-manifold theory. In this paper, we investigate a relaxed notion of normal surfaces where we remove the quadrilateral co
The classifying space for the framed Haefliger structures of codimension $q$ and class $C^r$ is $(2q-1)$-connected, for $1le rleinfty$. The corollaries deal with the existence of foliations, with the homology and the perfectness of the diffeomorphism
We establish a form of the h-principle for the existence of foliations quasi-complementary to a given one; the same methods also provide a proof of the classical Mather-Thurston theorem.