ﻻ يوجد ملخص باللغة العربية
We describe measurements of the decay of pure superfluid turbulence in superfluid 3He-B, in the low temperature regime where the normal fluid density is negligible. We follow the decay of the turbulence generated by a vibrating grid as detected by vibrating wire resonators. Despite the absence of any classical normal fluid dissipation processes, the decay is consistent with turbulence having the classical Kolmogorov energy spectrum and is remarkably similar to that measured in superfluid 4He at relatively high temperatures. Further, our results strongly suggest that the decay is governed by the superfluid circulation quantum rather than kinematic viscosity.
Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid
We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator in equilibrium rotation at co
In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for ther
Kelvin waves or Kelvons have been known for a long time as gapless excitations propagating along superfluid vortices. These modes can be interpreted as the Nambu-Goldstone excitations arising from the spontaneous breaking of the translational symmetr