ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric-field control of tunneling magnetoresistance effect in a Ni/InAs/Ni quantum-dot spin valve

166   0   0.0 ( 0 )
 نشر من قبل Kohei Hamaya
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate an electric-field control of tunneling magnetoresistance (TMR) effect in a semiconductor quantum-dot (QD) spin-valve device. By using ferromagnetic Ni nano-gap electrodes, we observe the Coulomb blockade oscillations at a small bias voltage. In the vicinity of the Coulomb blockade peak, the TMR effect is significantly modulated and even its sign is switched by changing the gate voltage, where the sign of the TMR value changes at the resonant condition.



قيم البحث

اقرأ أيضاً

A most fundamental and longstanding goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics. Here, we demonstrate all these points using semiconductor quantum dots (Q Ds), individually spin-polarized by ferromagnetic split-gates (FSGs). As a proof of principle, we fabricated a double QD spin valve consisting of two weakly coupled semiconducting QDs in an InAs nanowire (NW), each with independent FSGs that can be magnetized in parallel or anti-parallel. In tunneling magnetoresistance (TMR) experiments at zero external magnetic field, we find a strongly reduced spin valve conductance for the two anti-parallel configurations, with a single QD polarization of $sim 27%$. The TMR can be significantly improved by a small external field and optimized gate voltages, which results in a continuously electrically tunable TMR between $+80%$ and $-90%$. A simple model quantitatively reproduces all our findings, suggesting a gate tunable QD polarization of $pm 80%$. Such versatile spin-polarized QDs are suitable for various applications, for example in spin projection and correlation experiments in a large variety of nanoelectronics experiments.
152 - E. H. Hwang , S. Das Sarma 2008
We develop a theory for graphene magnetotransport in the presence of carrier spin polarization as induced, for example, by the application of an in-plane magnetic field ($B$) parallel to the 2D graphene layer. We predict a negative magnetoresistance $sigma propto B^2$ for intrinsic graphene, but for extrinsic graphene we find a non-monotonic magnetoresistance which is positive at lower magnetic fields (below the full spin-polarization) and negative at very high fields (above the full spin-polarization). The conductivity of the minority spin band $(-)$ electrons does not vanish as the minority carrier density ($n_-$) goes to zero. The residual conductivity of $(-)$ electrons at $n_- = 0$ is unique to graphene. We discuss experimental implications of our theory.
Hybrid systems coupling quantum spin defects (QSD) and magnons can enable unique spintronic device functionalities and probes for magnetism. Here, we add electric field control of magnon-QSD coupling to such systems by integrating ferromagnet-ferroel ectric multiferroic with nitrogen-vacancy (NV) center spins. Combining quantum relaxometry with ferromagnetic resonance measurements and analytical modeling, we reveal that the observed electric-field tuning results from ferroelectric polarization control of the magnon-generated fields at the NV. Exploiting the demonstrated control, we also propose magnon-enhanced hybrid electric field sensors with improved sensitivity.
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/YIG) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
We introduce a new class of spintronics devices in which a spin-valve like effect results from strong spin-orbit coupling in a single ferromagnetic layer rather than from injection and detection of a spin-polarized current by two coupled ferromagnets . The effect is observed in a normal-metal/insulator/ferromagnetic-semiconductor tunneling device. This behavior is caused by the interplay of the anisotropic density of states in (Ga,Mn)As with respect to the magnetization direction, and the two-step magnetization reversal process in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا