ترغب بنشر مسار تعليمي؟ اضغط هنا

Teleportation of massive particles without shared entanglement

72   0   0.0 ( 0 )
 نشر من قبل Ashton Bradley
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for quantum state transfer from one atom laser beam to another via an intermediate optical field, using Raman incoupling and outcoupling techniques. Our proposal utilises existing experimental technologies to teleport macroscopic matter waves over potentially large distances without shared entanglement.

قيم البحث

اقرأ أيضاً

Using an operational definition we quantify the entanglement, $E_P$, between two parties who share an arbitrary pure state of $N$ indistinguishable particles. We show that $E_P leq E_M$, where $E_M$ is the bipartite entanglement calculated from the m ode-occupation representation. Unlike $E_M$, $E_P$ is {em super-additive}. For example, $E_P =0$ for any single-particle state, but the state $ket{1}ket{1}$, where both modes are split between the two parties, has $E_P = 1/2$. We discuss how this relates to quantum correlations between particles, for both fermions and bosons.
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: I) open, dimerized XX chains, and II) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model I) supports true long-distance entanglement at zero temperature, while model II) supports {it ``quasi long-distance} entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model I) and algebraic in model II), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.
153 - Soojoon Lee , Jungjoon Park 2009
The monogamy inequality in terms of the concurrence, called the Coffman-Kundu-Wootters inequality [Phys. Rev. A {bf 61}, 052306 (2000)], and its generalization [T.J. Osborne and F. Verstraete, Phys. Rev. Lett. {bf 96}, 220503 (2006)] hold on general $n$-qubit states including mixed ones. In this paper, we consider the monogamy inequalities in terms of the fully entangled fraction and the teleportation fidelity. We show that the monogamy inequalities do not hold on general mixed states, while the inequalities hold on $n$-qubit pure states.
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum comp uting. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 standard deviations beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Since our results already allow for efficient implementation of entanglement purification, we anticipate our assay to lay the ground for a fully-fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
Teleportation may be taken as sending and extracting quantum information through quantum channels. In this report, it is shown that to get the maximal probability of exact teleportation through partially entangled quantum channels, the sender (Alice) need only to operate a measurement which satisfy an ``entanglement matching to this channel. An optimal strategy is also provided for the receiver (Bob) to extract the quantum information by adopting general evolutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا