ﻻ يوجد ملخص باللغة العربية
The GLIMPSE archive was used to obtain 3.6--8.0micron, point source photometry and images for 381 massive protostellar candidates lying in the Galactic mid-plane. The colours, magnitudes and spectral indicies of sources in each of the 381 target fields were analysed and compared with the predictions of 2D radiative transfer model simulations. Although no discernable embedded clusters were found in any targets, multiple sources or associations of redenned young stellar objects were found in many sources indicating multiplicity at birth. The spectral index ($alpha$) of these point sources in 3.6--8.0mum bands display large values of $alpha$=2--5. A color-magnitude analog plot was used to identify 79 infrared counterparts to the HMPOs. Compact nebulae are found in 75% of the detected sources with morphologies that can be well described by core-halo, cometary, shell-like and bipolar geometries similar to those observed in ultra-compact HII regions. The IRAC band SEDs of the IR counterparts of HMPOs are best described to represent YSOs with a mass range of 8--20msun in their Class I stages when compared with 2D radiative transfer models. They also suggest that the high $alpha$ values represent reprocessed star/star+disk emission that is arising in the dense envelopes. Thus we are witnessing the luminous envelopes around the protostars rather than their photospheres or disks. We argue that the compact infrared nebulae likely reflect the underlying physical structure of the dense cores and are found to imitate the morphologies of known UCHII regions. Our results favour models of continuuing accretion involving both molecular and ionised accretion components to build the most massive stars rather than purely molecular rapid accretion flows.
The Spitzer-GLIMPSE point source catalog and images have been used to study a sample of 381 massive protostellar candidates. IRAC-Point source photometry was used to analyse colours, magnitudes and spectral indicies of the infrared counterparts (IRCs
We aim to estimate and analyse the physical properties of the infrared counterparts of HMPOs by comparing their spectral energy distributions (SED) with those predicted by radiative transfer accretion models of YSOs. The SED of 68 IRCs are extended b
We present the results of CS J=2-1 mapping observations towards 39 massive star-forming regions selected from the previous CO line survey of cold IRAS sources with high-velocity CO flows along the Galactic plane (Yang et al. 2002). All sources are de
The role of accretion disks in the formation of low-mass stars has been well assessed by means of high angular resolution observations at various wavelengths. These findings confirm the prediction that conservation of angular momentum during the coll
(Abridged) We performed a deep infrared imaging survey of 63 embedded young stellar objects (YSOs) located in the Taurus and Ophiuchus clouds to search for companions. The sample includes Class I and flat infrared spectrum protostellar objects. We fi