ترغب بنشر مسار تعليمي؟ اضغط هنا

A Study on anisotropy of cosmic ray distribution with a small array of water-cherenkov detectors

31   0   0.0 ( 0 )
 نشر من قبل Farzaneh Sheidaei
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the anisotropy of the arrival directions is an essential tool to investigate the origin and propagation of cosmic rays primaries. A simple way of recording many cosmic rays is to record coincidences between a number of detectors. We have monitored multi-TeV cosmic rays by a small array of water cherenkov detectors in Tehran(35 43 N, 51 20 E, 1200m a.s.l). More than 1.1*10^6 extensive air shower events were recorded. In addition to the Compton- Getting effect due to the motion of the earth in the Galaxy, an anisotropy has been observed which is due to a unidirectional anisotropy of cosmic ray flow along the Galactic arms.

قيم البحث

اقرأ أيضاً

The Latin American Giant Observatory (LAGO) is a distributed cosmic ray observatory that spans over Latin America in a wide range of latitudes and altitudes. One of the main goals of LAGO is to study atmospheric radiation and space weather through th e measurement of the secondary particles from cosmic ray flux at ground level using Water Cherenkov Detectors (WCD). Thus, due to differences in the local geomagnetic rigidity cut-off affecting the low energy cosmic rays impinging on the atmosphere and the well-known relation between altitude and the development of the extended atmospheric showers, different secondary particle fluxes are expected at each LAGO site. It is therefore crucial for our objectives to be able to determine the expected flux of secondary particles at any place in the World and for any geomagnetic or atmospheric conditions. To characterize the response of a particular LAGO site we developed ARTI, a complete framework intended to simulate the WCD signals produced by the interaction of the secondary inside the detector. ARTI comprises a simulation sequence by integrating three different simulation tools: a) Magnetocosmics, to account for the geomagnetic field effects on the primary flux; b) CORSIKA, to simulate the atmospheric showers originated on the complete flux of cosmic rays and, thus, to estimate the expected flux of secondary particle at the site; and c) Geant4, for simulating the LAGO detectors response to this secondary flux. In this work, we show the usage of the ARTI framework by calculating the expected flux of signals at eight LAGO sites, covering a wide range of altitudes and rigidity cut-offs to emphasize the capabilities of the LAGO network spanning over Latin America. These results show that we are able to estimate the response of any water Cherenkov detector located at any place in the World, even under evolving atmospheric and geomagnetic conditions.
Our Galaxy is filled with cosmic-ray particles and more than 98% of them are atomic nuclei. In order to clarify their origin and acceleration mechanism, chemical composition measurements of these cosmic rays with wide energy coverage play an importan t role. Imaging Atmospheric Cherenkov Telescope (IACT) arrays are designed to detect cosmic gamma-rays in the very-high-energy regime ($sim$TeV). Recently these systems proved to be capable of measuring cosmic-ray chemical composition in the sub-PeV region by capturing direct Cherenkov photons emitted by charged primary particles. Extensive air shower profiles measured by IACTs also contain information about the primary particle type since the cross section of inelastic scattering in the air depends on the primary mass number. The Cherenkov Telescope Array (CTA) is the next generation IACT system, which will consist of multiple types of telescopes and have a km$^2$-scale footprint and extended energy coverage (20 GeV to 300 TeV). In order to estimate CTA potential for cosmic ray composition measurement, a full Monte Carlo simulation including a description of extensive air shower and detector response is needed. We generated a number of cosmic-ray nuclei events (8 types selected from H to Fe) for a specific CTA layout candidate in the southern-hemisphere site. We applied Direct Cherenkov event selection and shower profile analysis to these data and preliminary results on charge number resolution and expected event count rate for these cosmic-ray nuclei are presented.
The novel idea of water Cherenkov calorimeter made of water tanks as the next generation neutrino detector for nu factories and nu beams is investigated. A water tank prototype with a dimension of 1*1*13m^3 is constructed, its performance is studied and compared with a GEANT4 based Monte Carlo simulation. By using measured parameters of the water tank, including the light collection efficiency, attenuation length, angular dependent response etc, a detailed Monte Carlo simulation demonstrates that the detector performance is excellent for identifying neutrino charged current events while rejecting neutral current and wrong-flavor backgrounds.
The Large High Altitude Air Shower Observatory (LHAASO) is planned to be built at Daocheng, Sichuan Province, China. The water Cherenkov detector array (WCDA), with an area of 78,000 m2 and capacity of 350,000 tons of purified water, is one of the ma jor components of the LHAASO project. A 9-cell detector prototype array has been built at the Yangbajing site, Tibet, China to comprehensively understand the water Cherenkov technique and investigate the engineering issues of WCDA. In this paper, the rate and charge distribution of single-channel signals are evaluated using a full detail Monte Carlo simulation. The results are discussed and compared with the prototype array.
47 - A.Neronov , D.Semikoz 2021
Measurements of cosmic ray electron+positron spectrum above 10 TeV with ground-based experiments is challenging because of the difficulty of rejection of hadronic extensive air shower background. We study the efficiency of rejection of the hadronic b ackground with water Cherenkov detector array supplemented by muon detection layer. We show that addition of a continuous muon detection layer to the experimental setup allows to achieve a ~ 1e-5 rejection factor for hadronic background at 10 TeV and enables measurement of electron spectrum in 10-100 TeV energy range. We show that measurements of electron spectrum in this energy range do not require a high-altitude experiment and can be done with a sea-level detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا