ﻻ يوجد ملخص باللغة العربية
Magnetic fields have been observed on all scales in our Galaxy, from AU to kpc. With pulsar dispersion measures and rotation measures, we can directly measure the magnetic fields in a very large region of the Galactic disk. The results show that the large-scale magnetic fields are aligned with the spiral arms but reverse their directions many times from the inner-most arm (Norma) to the outer arm (Perseus). The Zeeman splitting measurements of masers in HII regions or star-formation regions not only show the structured fields inside clouds, but also have a clear pattern in the global Galactic distribution of all measured clouds which indicates the possible connection of the large-scale and small-scale magnetic fields.
This article reviews recent progress in observational determination of the properties of dark matter on small astrophysical scales, and progress towards the European Extremely Large Telescope. Current results suggest some surprises: the central DM de
Primordial magnetic fields lead to non-Gaussian signals in the Cosmic Microwave Background (CMB) even at the lowest order, as magnetic stresses, and the temperature anisotropy they induce, depend quadratically on the magnetic field. In contrast, CMB
We consider the conditions under which a rotating magnetic object can produce a magnetically powered outflow in an initially unmagnetized medium stratified under gravity. 3D MHD simulations are presented in which the footpoints of localized, arcade-s
The study of the optical continuum of radio galaxies shows that about 30% have a young stellar population component. Among them are the most far-IR bright radio galaxies. A further indication of the relatively gas rich environment of these galaxies (
We study the effect of large scale tangled magnetic fields on the galaxy two-point correlation function in the redshift space. We show that (a) the magnetic field effects can be comparable the gravity-induced clustering for present magnetic field str