We study the phase diagram of a quasi-two dimensional magnetic system ${rm Rb_2MnF_4}$ with Monte Carlo simulations of a classical Heisenberg spin Hamiltonian which includes the dipolar interactions between ${rm Mn}^{2+}$ spins. Our simulations reveal an Ising-like antiferromagnetic phase at low magnetic fields and an XY phase at high magnetic fields. The boundary between Ising and XY phases is analyzed with a recently proposed finite size scaling technique and found to be consistent with a bicritical point at T=0. We discuss the computational techniques used to handle the weak dipolar interaction and the difference between our phase diagram and the experimental results.
We use Monte Carlo simulations to study ${rm Ni Fe_2O_4}$ nanoparticles. Finite size and surface effects differentiate them from their bulk counterparts. A continuous version of the Wang-Landau algorithm is used to calculate the joint density of stat
es $g(M_z, E)$ efficiently. From $g(M_z, E)$, we obtain the Bragg-Williams free energy of the particle, and other physical quantities. The hysteresis is observed when the nanoparticles have both surface disorder and surface anisotropy. We found that the finite coercivity is the result of interplay between surface disorder and surface anisotropy. If the surface disorder is absent or the surface anisotropy is relatively weak, the nanoparticles often exhibit superparamagnetism.
The unusual thermodynamic properties of the Ising antiferromagnet supplemented with a ferromagnetic, mean-field term are outlined. This simple model is inspired by more realistic models of spin-crossover materials. The phase diagram is estimated usin
g Metropolis Monte Carlo methods, and differences with preliminary Wang-Landau Monte Carlo results for small systems are noted.
By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point
in $2+epsilon$ dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear $sigma$ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dimensions is Heisenberg-like and occurs at T=0, therefore the uncertainty in the phase diagram of this model is removed.
The unconstrained ensemble describes completely open systems whose control parameters are chemical potential, pressure, and temperature. For macroscopic systems with short-range interactions, thermodynamics prevents the simultaneous use of these inte
nsive variables as control parameters, because they are not independent and cannot account for the system size. When the range of the interactions is comparable with the size of the system, however, these variables are not truly intensive and may become independent, so equilibrium states defined by the values of these parameters may exist. Here, we derive a Monte Carlo algorithm for the unconstrained ensemble and show that simulations can be performed using chemical potential, pressure, and temperature as control parameters. We illustrate the algorithm by applying it to physical systems where either the system has long-range interactions or is confined by external conditions. The method opens up a new avenue for the simulation of completely open systems exchanging heat, work, and matter with the environment.
We propose a new generalized-ensemble algorithm, which we refer to as the multibaric-multithermal Monte Carlo method. The multibaric-multithermal Monte Carlo simulations perform random walks widely both in volume space and in potential energy space.
From only one simulation run, one can calculate isobaric-isothermal-ensemble averages at any pressure and any temperature. We test the effectiveness of this algorithm by applying it to the Lennard-Jones 12-6 potential system with 500 particles. It is found that a single simulation of the new method indeed gives accurate average quantities in isobaric-isothermal ensemble for a wide range of pressure and temperature.
Chenggang Zhou
,D. P. Landau
,T. C. Schulthess
.
(2007)
.
"Monte Carlo simulations of ${rm Rb_2MnF_4}$, a classical Heisenberg antiferromagnet in two-dimensions with dipolar interaction"
.
Chenggang Zhou
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا