ﻻ يوجد ملخص باللغة العربية
In this paper we extend the construction of the canonical polarized variation of Hodge structures over tube domain considered by B. Gross in cite{G} to bounded symmetric domain and introduce a series of invariants of infinitesimal variation of Hodge structures, which we call characteristic subvarieties. We prove that the characteristic subvariety of the canonical polarized variations of Hodge structures over irreducible bounded symmetric domains are identified with the characteristic bundles defined by N. Mok in cite{M}. We verified the generating property of B. Gross for all irreducible bounded symmetric domains, which was predicted in cite{G}.
The main problem addressed in the paper is the Torelli problem for n-dimensional varieties of general type, more specifically for varieties with ample canonical bundle. It asks under which geometrical condition for a variety the period map for the Ho
It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite dimensional inner product spaces. The representations, and the induced bundles, have composition
It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic Lie algebra on finite dimensional inner product spaces. The representations, and the induced bundles, have compo
Motivated by mirror symmetry of one-parameter models, an interesting class of Fuchsian differential operators can be singled out, the so-called Calabi--Yau operators, introduced by Almkvist and Zudilin. They conjecturally determine $Sp(4)$-local syst
We present a list of Calabi-Yau threefolds known to us, and with holonomy groups that are precisely SU(3), rather than a subgroup, with small Hodge numbers, which we understand to be those manifolds with height $(h^{1,1}+h^{2,1})le 24$. With the comp