ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized Variation of Hodge Structures of Calabi-Yau Type and Characteristic Subvarieties Over Bounded Symmetric Domains

590   0   0.0 ( 0 )
 نشر من قبل Mao Sheng
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we extend the construction of the canonical polarized variation of Hodge structures over tube domain considered by B. Gross in cite{G} to bounded symmetric domain and introduce a series of invariants of infinitesimal variation of Hodge structures, which we call characteristic subvarieties. We prove that the characteristic subvariety of the canonical polarized variations of Hodge structures over irreducible bounded symmetric domains are identified with the characteristic bundles defined by N. Mok in cite{M}. We verified the generating property of B. Gross for all irreducible bounded symmetric domains, which was predicted in cite{G}.



قيم البحث

اقرأ أيضاً

The main problem addressed in the paper is the Torelli problem for n-dimensional varieties of general type, more specifically for varieties with ample canonical bundle. It asks under which geometrical condition for a variety the period map for the Ho dge structure of weight n is a local embedding. We define a line bundle to be almost very ample iff the associated linear system is base point free and yields an injective morphism. We define instead a line bundle to be quasi very ample if it yields a birational morphism which is a local embedding on the complement of a finite set. Our main result is the existence of infinitely many families of surfaces of general type, with quasi very ample canonical bundle, each yielding an irreducible connected component of the moduli space, such that the period map has everywhere positive dimensional fibres. These surfaces are surfaces isogenous to a product, i.e., quotients of a product of curves by the free action of a finite group G. In the paper we also give some sufficient conditions in order that global double Torelli holds for these surfaces, i.e., the isomorphism type of the surface is reconstructed from the fundamental group plus the Hodge structure on the cohomology algebra. We do this via some useful lemmas on the action of an abelian group on the cohomology of an algebraic curve. We also establish a birational description of the moduli space of curves of genus 3 with a non trivial 3-torsion divisor.
It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite dimensional inner product spaces. The representations, and the induced bundles, have composition series with irreducible factors. We give a condition under which the bundle and the direct sum of its irreducible constituents are intertwined by an equivariant constant coefficient differential operator. We show that in the case of the unit ball in $mathbb C^2$ this condition is always satisfied. As an application we show that all homogeneous pairs of Cowen-Douglas operators are similar to direct sums of certain basic pairs.
It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic Lie algebra on finite dimensional inner product spaces. The representations, and the induced bundles, have compo sition series with irreducible factors. Our first main result is the construction of an explicit differential operator intertwining the bundle with the direct sum of its factors. Next, we study Hilbert spaces of sections of these bundles. We use this to get, in particular, a full description and a similarity theorem for homogeneous $n$-tuples of operators in the Cowen-Douglas class of the Euclidean unit ball in $mathbb C^n$.
134 - Duco van Straten 2017
Motivated by mirror symmetry of one-parameter models, an interesting class of Fuchsian differential operators can be singled out, the so-called Calabi--Yau operators, introduced by Almkvist and Zudilin. They conjecturally determine $Sp(4)$-local syst ems that underly a $mathbb{Q}$-VHS with Hodge numbers [h^{3 0}=h^{2 1}=h^{1 2}=h^{0 3}=1] and in the best cases they make their appearance as Picard--Fuchs operators of families of Calabi--Yau threefolds with $h^{12}=1$ and encode the numbers of rational curves on a mirror manifold with $h^{11}=1$. We review some of the striking properties of this rich class of operators.
We present a list of Calabi-Yau threefolds known to us, and with holonomy groups that are precisely SU(3), rather than a subgroup, with small Hodge numbers, which we understand to be those manifolds with height $(h^{1,1}+h^{2,1})le 24$. With the comp letion of a project to compute the Hodge numbers of free quotients of complete intersection Calabi-Yau threefolds, most of which were computed in Refs. [1-3] and the remainder in Ref. [4], many new points have been added to the tip of the Hodge plot, updating the reviews by Davies and Candelas in Refs. [1, 5]. In view of this and other recent constructions of Calabi-Yau threefolds with small height, we have produced an updated list.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا