ترغب بنشر مسار تعليمي؟ اضغط هنا

An array of low-background $^3$He proportional counters for the Sudbury Neutrino Observatory

85   0   0.0 ( 0 )
 نشر من قبل Laura Stonehill
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An array of Neutral-Current Detectors (NCDs) has been built in order to make a unique measurement of the total active flux of solar neutrinos in the Sudbury Neutrino Observatory (SNO). Data in the third phase of the SNO experiment were collected between November 2004 and November 2006, after the NCD array was added to improve the neutral-current sensitivity of the SNO detector. This array consisted of 36 strings of proportional counters filled with a mixture of $^3$He and CF$_4$ gas capable of detecting the neutrons liberated by the neutrino-deuteron neutral current reaction in the D$_2$O, and four strings filled with a mixture of $^4$He and CF$_4$ gas for background measurements. The proportional counter diameter is 5 cm. The total deployed array length was 398 m. The SNO NCD array is the lowest-radioactivity large array of proportional counters ever produced. This article describes the design, construction, deployment, and characterization of the NCD array, discusses the electronics and data acquisition system, and considers event signatures and backgrounds.

قيم البحث

اقرأ أيضاً

78 - B. Beltran , H. Bichsel , B. Cai 2011
The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar n eutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNOs third-phase 8B solar-neutrino measurement.
A calibration source using gamma-rays from 16N (t_1/2 = 7.13 s) beta-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form o f CO2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D2O or H2O) in a CO2 gas stream via small diameter capillary tubing. The bulk of the activity decays in a decay/trigger chamber designed to block the energetic beta-particles yet permit the primary branch 6.13 MeV gamma-rays to exit. Detection of the coincident beta-particles with plastic scintillator lining the walls of the decay chamber volume provides a tag for the SNO electronics. This paper gives details of the production, transfer, and triggering systems for this source along with a discussion of the source gamma-ray output and performance.
We present a straightforward method for particle identification and background rejection in $^3$He proportional counters for use in neutron detection. By measuring the risetime and pulse height of the preamplifier signals, one may define a region in the risetime versus pulse height space where the events are predominately from neutron interactions. For six proportional counters surveyed in a low-background environment, we demonstrate the ability to reject alpha-particle events with an efficiency of 99%. By applying the same method, we also show an effective rejection of microdischarge noise events that, when passed through a shaping amplifier, are indistinguishable from physical events in the counters. The primary application of this method is in measurements where the signal-to-background for counting neutrons is very low, such as in underground laboratories.
The production and analysis of distributed sources of 24Na and 222Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the 3He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described.
The long baseline between the Earth and the Sun makes solar neutrinos an excellent test beam for exploring possible neutrino decay. The signature of such decay would be an energy-dependent distortion of the traditional survival probability which can be fit for using well-developed and high precision analysis methods. Here a model including neutrino decay is fit to all three phases of $^8$B solar neutrino data taken by the Sudbury Neutrino Observatory. This fit constrains the lifetime of neutrino mass state $ u_2$ to be ${>8.08times10^{-5}}$ s/eV at $90%$ confidence. An analysis combining this SNO result with those from other solar neutrino experiments results in a combined limit for the lifetime of mass state $ u_2$ of ${>1.04times10^{-3}}$ s/eV at $99%$ confidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا