ﻻ يوجد ملخص باللغة العربية
We illustrate that open quantum systems composed of neutral, ultracold atoms in one-dimensional optical lattices can exhibit behavior analogous to semiconductor electronic circuits. A correspondence is demonstrated for bosonic atoms, and the experimental requirements to realize these devices are established. The analysis follows from a derivation of a quantum master equation for this general class of open quantum systems.
Unipolar devices constructed from ferromagnetic semiconducting materials with variable magnetization direction are shown theoretically to behave very similarly to nonmagnetic bipolar devices such as the p-n diode and the bipolar (junction) transistor
We study in this article how heat can be exchanged between two level systems (TLS) each of them being coupled to a thermal reservoir. Calculation are performed solving a master equation for the density matrix using the Born markov-approximation. We a
Transistors play a vital role in classical computers, and their quantum mechanical counterparts could potentially be as important in quantum computers. Where a classical transistor is operated as a switch that either blocks or allows an electric curr
Vertical $pn$ heterojunction diodes were prepared by plasma-assisted molecular beam epitaxy of unintentionally-doped $p$-type SnO layers with hole concentrations ranging from $p=10^{18}$ to $10^{19}$cm$^{-3}$ on unintentionally-doped $n$-type $beta$-
Alternating current (ac) circuits can have electromagnetic edge modes protected by symmetries, analogous to topological band insulators or semimetals. How to make such a topological circuit? This paper illustrates a particular design idea by analyzin