ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold Thermalization of $^7$Li and $^{87}$Rb

182   0   0.0 ( 0 )
 نشر من قبل Carsten Marzok
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on measurements of cross-species thermalization inside a magnetically trapped spin-polarized mixture of $^{87}$Rb and $^7$Li atoms with both atoms in their respective low field seeking magnetic substates $|F=2,m_F=2right>$. Measurement of the thermalization velocity in the ultracold regime below $10 mu$K allows for the derivation of the absolute value of the pure triplet s-wave scattering length governing the interaction. We find $|a_{7,87}|=(59pm19) a_{rm B}$. We propose to study both species in the condensed regime to derive the sign of $a_{7,87}$. In this context, we present numerical solutions to the coupled Gross-Pitaevskii equation based on the hypothesis of a positive sign. According to the simulations, phase separation of the Li and Rb $|2,2right>$ clouds occurs along with a mean-field stabilization allowing for larger atom numbers of condensed $^7$Li atoms before collapse sets in. Observation of this mean-field stabilization would directly fix the sign of $a_{7,87}$. We discuss our results in the light of this proposal.



قيم البحث

اقرأ أيضاً

161 - C. Marzok , B. Deh , C. Zimmermann 2008
We report on the observation of five Feshbach resonances in collisions between ultracold $^7$Li and $^{87}$Rb atoms in the absolute ground state mixture where both species are in their $|f,m_f>=|1,1>$ hyperfine states. The resonances appear as trap l osses for the $^7$Li cloud induced by inelastic heteronuclear three-body collisions. The magnetic field values where they occur are important quantities for an accurate determination of the interspecies interaction potentials. Results of coupled channels calculations based on the observed resonances are presented and refined potential parameters are given. A very broad Feshbach resonance centered around 649 G should allow for fine tuning of the interaction strength in future experiments.
123 - B. Deh , C. Marzok , C. Zimmermann 2007
We report on the observation of two Feshbach resonances in collisions between ultracold $^6$Li and $^{87}$Rb atoms in their respective hyperfine ground states $|F,m_F>=|1/2,1/2>$ and $|1,1>$. The resonances show up as trap losses for the $^6$Li cloud induced by inelastic Li-Rb-Rb three-body collisions. The magnetic field values where they occur represent important benchmarks for an accurate determination of the interspecies interaction potentials. A broad Feshbach resonance located at 1066.92 G opens interesting prospects for the creation of ultracold heteronuclear molecules. We furthermore observe a strong enhancement of the narrow p-wave Feshbach resonance in collisions of $^6$Li atoms at 158.55 G in the presence of a dense $^{87}$Rb cloud. The effect of the $^{87}$Rb cloud is to introduce Li-Li-Rb three-body collisions occurring at a higher rate than Li-Li-Li collisions.
147 - S. B. Papp , C. E. Wieman 2006
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a $^{87}$Rb BEC and a cold atomic gas of $^{85}$Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even tho ugh the $^{85}$Rb gas is non-degenerate we observe a large molecular conversion efficiency due to the presence of a quantum degenerate $^{87}$Rb gas; this represents a key feature of our system. We compare the molecule creation at two different Feshbach resonances with different magnetic-field widths. The two Feshbach resonances are located at $265.44pm0.15$ G and $372.4pm1.3$ G. We also directly measure the small binding energy of the molecules through resonant magnetic-field association.
Recently we have reported (Knoop et al. [arXiv:1404.4826]) on an experimental determination of metastable triplet $^4$He+$^{87}$Rb scattering length by performing thermalization measurements for an ultracold mixture in a quadrupole magnetic trap. Her e we present our experimental apparatus and elaborate on these thermalization measurements. In particular we give a theoretical description of interspecies thermalization rate for a quadrupole magnetic trap, i. e. in the presence of Majorana heating, and a general procedure to extract the scattering length from the elastic cross section at finite temperature based on knowledge of the $C_6$ coefficient alone. In addition, from our thermalization data we obtain an upper limit of the total interspecies two-body loss rate coefficient of $1.5times 10^{-12}$ cm$^3$s$^{-1}$.
225 - Fang Fang , Shun Wu , Aaron Smull 2019
We measure the interspecies interaction strength between $^7$Li and $^{87}$Rb atoms through cross-dimensional relaxation of two-element gas mixtures trapped in a spherical quadrupole magnetic trap. We record the relaxation of an initial momentum-spac e anisotropy in a lithium gas when co-trapped with rubidium atoms, with both species in the $|F=1, m_F = -1rangle$ hyperfine state. Our measurements are calibrated by observing cross-dimensional relaxation of a $^{87}$Rb-only trapped gas. Through Monte Carlo simulations, we compare the observed relaxation to that expected given the theoretically predicted energy-dependent differential cross section for $^7$Li-$^{87}$Rb collisions. The experimentally observed relaxation occurs significantly faster than predicted theoretically, a deviation that appears incompatible with other experimental data characterising the $^7$Li-$^{87}$Rb molecular potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا