ﻻ يوجد ملخص باللغة العربية
In case a mirror world with a copy of our ordinary particle spectrum would exist, the neutron n and its degenerate partner, the mirror neutron ${rm n}$, could potentially mix and undergo ${rm nn}$ oscillations. The interaction of an ordinary magnetic field with the ordinary neutron would lift the degeneracy between the mirror partners, diminish the ${rm n}$-amplitude in the n-wavefunction and, thus, suppress its observability. We report an experimental comparison of ultracold neutron storage in a trap with and without superimposed magnetic field. No influence of the magnetic field is found and, assuming negligible mirror magnetic fields, a limit on the oscillation time $tau_{rm nn} > 103$ s (95% C.L.) is derived.
Present probes do not exclude that the neutron ($n$) oscillation into mirror neutron ($n$), a sterile state exactly degenerate in mass with the neutron, can be a very fast process, in fact faster than the neutron decay itself. This process is sensiti
We performed ultracold neutron (UCN) storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n) oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B, UCN losses wou
Mirror matter is considered as a candidate for dark matter. In connection with this an experimental search for neutron - mirror neutron (nn) transitions has been carried out using storage of ultracold neutrons in a trap with different magnetic fields
The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron $beta$-decay. Two groups have performed a series of experiments in search of neutron - mirror-n
It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mi