ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

34   0   0.0 ( 0 )
 نشر من قبل Christopher Allan Watson
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

قيم البحث

اقرأ أيضاً

57 - Maxim Lyutikov 2020
We develop a model of the white dwarf (WD) - red dwarf (RD) binaries AR Sco and AE Aqr as systems in a transient propeller stage of highly asynchronous intermediate polars. The WDs are relatively weakly magnetized with magnetic field of $sim 10^6$ G. We explain the salient observed features of the systems due to the magnetospheric interaction of two stars. Currently, the WDs spin-down is determined by the mass loading of the WDs magnetosphere from the RDs at a mild rate of $dot{M}_{WD} sim 10^{-11} M_odot $/yr. Typical loading distance is determined by the ionization of the RDs wind by the WDs UV flux. The WD was previously spun up by a period of high accretion rate from the RD via Roch lobe overflow with $dot{M} sim 10^{-9} M_odot $/yr, acting for as short a period as tens of thousands of years. The non-thermal X-ray and optical synchrotron emitting particles originate in reconnection events in the magnetosphere of the WD due to the interaction with the flow from the RD. In the case of AR Sco, the reconnection events produce signals at the WDs rotation and beat periods - this modulation is due to the changing relative orientation of the companions magnetic moments and resulting variable reconnection conditions. Radio emission is produced in the magnetosphere of the RD, we hypothesize, in a way that it is physically similar to the Io-induced Jovian decametric radiation.
We report the results of a 45 ks Chandra observation of the cataclysmic variable V426 Ophiuchus. The high resolution spectrum from the high-energy transmission grating spectrometer is most consistent with a cooling flow model, placing V426 Oph among the group of CVs including U Gem and EX Hya. An uninterrupted lightcurve was also constructed, in which we detect a significant 4.2 hr modulation together with its first harmonic at 2.1 hrs. Reanalysis of archival Ginga, and ROSAT X-ray lightcurves also reveals modulations at periods consistent with 4.2 and/or 2.1 hrs. Furthermore, optical photometry in V, simultaneous with the Chandra observation, indicates a modulation anti-correlated with the X-ray, and later more extensive R band photometry finds a signal at ~2.1 hrs. The earlier reported X-ray periods at ~0.5 and 1 hrs appear to be only transient and quasi-periodic in nature. In contrast, the 4.2 hr period or its harmonic are stable and persistent in X-ray/optical data from 1988 to 2003. This periodicity is clearly distinct from the 6.85 hr orbit, and could be due to the spin of the white dwarf. If this is the case, V426 Oph would be the first long period intermediate polar with a ratio P_spin/P_orb of 0.6. However, this interpretation requires unreasonable values of magnetic field strength and mass accretion rate.
We provide a summary of results, obtained from a multiwavelength (TeV gamma-ray, X-ray, UV, optical, and radio) campaign of observations of AE Aqr conducted in 2005 August 28-September 2, on the nature and correlation of the flux variations in the va rious wavebands, the white dwarf spin evolution, the properties of the X-ray emission region, and the very low upper limits on the TeV gamma-ray flux.
High-dispersion time-resolved spectroscopy of the unique magnetic cataclysmic variable AE Aqr is presented. A radial velocity analysis of the absorption lines yields K_2 = 168.7+/- 1 km/s. Substantial deviations of the radial velocity curve from a si nusoid are interpreted in terms of intensity variations over the secondary stars surface. A complex rotational velocity curve as a function of orbital phase is detected which has a modulation frequency of twice the orbital frequency, leading to an estimate of the binary inclination angle that is close to 70^o. The minimum and maximum rotational velocities are used to indirectly derive a mass ratio of q= 0.6 and a radial velocity semi-amplitude of the white dwarf of K_1 = 101+/-3 km/s. We present an atmospheric temperature indicator, based on the absorption line ratio of Fe I and Cr I lines, whose variation indicates that the secondary star varies from K0 to K4 as a function of orbital phase. The ephemeris of the system has been revised, using more than one thousand radial velocity measurements, published over nearly five decades. From the derived radial velocity semi-amplitudes and the estimated inclination angle, we calculate that the masses of the stars are M_1 = 0.63+/-0.05M_sun; M_2 = 0.37+/-0.04 M_sun, and their separation is a = 2.33+/-0.02R_sun. Our analysis indicates the presence of a late-type star whose radius is larger, by a factor of nearly two, than the radius of a normal main sequence star of its mass. Finally we discuss the possibility that the measured variations in the rotational velocity, temperature, and spectral type of the secondary star as functions of orbital phase may, like the radial velocity variations, be attributable to regions of enhanced absorption on the stars surface.
Thorstensen (2020) recently argued that the cataclysmic variable (CV) LAMOST J024048.51+195226.9 may be a twin to the unique magnetic propeller system AE Aqr. If this is the case, two predictions are that it should display a short period white dwarf spin modulation, and that it should be a bright radio source. We obtained follow-up optical and radio observations of this CV, in order to see if this holds true. Our optical high-speed photometry does not reveal a white dwarf spin signal, but lacks the sensitivity to detect a modulation similar to the 33-s spin signal seen in AE Aqr. We detect the source in the radio, and measure a radio luminosity similar to that of AE Aqr and close to the highest so far reported for a CV. We also find good evidence for radio variability on a time scale of tens of minutes. Optical polarimetric observations produce no detection of linear or circular polarization. While we are not able to provide compelling evidence, our observations are all consistent with this object being a propeller system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا