ﻻ يوجد ملخص باللغة العربية
This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-DeWitt equation, gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it fit with the physics of cosmic quantum birth. By solving Wheeler-DeWitt equation we achieve a general probability distribution of the cosmic birth, and give the analysis of cosmic quantum birth.
The radial Wheeler--De Witt equation on the asymptotically AdS spacetime proposed in [9] has as its semiclassical solution the wave function that asymptotically satisfies the conformal Ward identity, exemplifying the AdS/CFT correspondence. In this p
We present a method for approximating the effective consequence of generic quantum gravity corrections to the Wheeler-DeWitt equation. We show that in many cases these corrections can produce departures from classical physics at large scales and that
In a theory of quantum gravity, states can be represented as wavefunctionals that assign an amplitude to a given configuration of matter fields and the metric on a spatial slice. These wavefunctionals must obey a set of constraints as a consequence o
We propose an ansatz which solves the Dyson-Schwinger equation for the real scalar fields in Poincare patch of de Sitter space in the IR limit. The Dyson-Schwinger equation for this ansatz reduces to the kinetic equation, if one considers scalar fiel
We derive a general WKB energy splitting formula in a double-well potential by incorporating both phase loss and anharmonicity effect in the usual WKB approximation. A bare application of the phase loss approach to the usual WKB method gives better r