ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate-tuned high frequency response of carbon nanotube Josephson junctions

301   0   0.0 ( 0 )
 نشر من قبل Wolfgang Wernsdorfer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbon nanotube (CNT) Josephson junctions in the open quantum dot limit exhibit superconducting switching currents which can be controlled with a gate electrode. Shapiro voltage steps can be observed under radiofrequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard RCSJ model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate-dependent, suggesting a diffusive contact of the nanotube.



قيم البحث

اقرأ أيضاً

We study the spin transport through a 1D quantum Ising-XY-Ising spin link that emulates a topological superconducting-normal-superconducting structure via Jordan-Wigner (JW) transformation. We calculate, both analytically and numerically, the spectru m of spin Andreev bound states and the resulting $mathbb{Z}_2$ fractional spin Josephson effect (JE) pertaining to the emerging Majorana JW fermions. Deep in the topological regime, we identify an effective time-reversal symmetry that leads to $mathbb{Z}_4$ fractional spin JE in the $textit{presence}$ of interactions within the junction. Moreover, we uncover a hidden inversion time-reversal symmetry that protects the $mathbb{Z}_4$ periodicity in chains with an odd number of spins, even in the $textit{absence}$ of interactions. We also analyze the entanglement between pairs of spins by evaluating the concurrence in the presence of spin current and highlight the effects of the JW Majorana states. We propose to use a microwave cavity setup for detecting the aforementioned JEs by dispersive readout methods and show that, surprisingly, the $mathbb{Z}_2$ periodicity is immune to $textit{any}$ local magnetic perturbations. Our results are relevant for a plethora of spin systems, such as trapped ions, photonic lattices, electron spins in quantum dots, or magnetic impurities on surfaces.
262 - Linfeng Ai , Enze Zhang , Ce Huang 2021
Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making an atomically-sharp interface from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. Owing to the remanent magnetic moment of the barrier, the critical current and the corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Through the control of this hysteresis, we can effectively trace the magnetic properties of atomic Cr2Ge2Te6 in response to the external magnetic field. Also, we observe a central minimum of critical current in some thick JJ devices, evidencing the coexistence of 0 and {pi} phase coupling in the junction region. Our study paves the way to exploring the sensitive probes of weak magnetism and multifunctional building blocks for phase-related superconducting circuits with the use of vdW heterostructures.
Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured i n tunneling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor/semiconductor nanowires. On the other hand, two dimensional systems offer the alternative approach to confine Ma jorana channels within planar Josephson junctions, in which the phase difference {phi} between the superconducting leads represents an additional tuning knob predicted to drive the system into the topological phase at lower magnetic fields. Here, we report the observation of phase-dependent zero-bias conductance peaks measured by tunneling spectroscopy at the end of Josephson junctions realized on a InAs/Al heterostructure. Biasing the junction to {phi} ~ {pi} significantly reduces the critical field at which the zero-bias peak appears, with respect to {phi} = 0. The phase and magnetic field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. Besides providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures and scalable to complex geometries needed for topological quantum computing.
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
We recently presented the first superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions [1: J. P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu and M. Monthioux, Nature Nanotech. 1, 53, ( 2006).], http://www.nature.com/nnano/journal/v1/n1/pdf/nnano.2006.54.pdf . We showed that quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting to change the hybridization of the QD states with the superconducting contacts. This technique is further illustrated in this additional supporting material where we show that the Kondo coupling for a given resonance can be continuously tuned by varying the backgate voltage. It allowed us to show [1] that CNT Josephson junctions can be used as gate-controlled pi-junctions, that is, the sign of the current-phase relation across the CNT junctions can be tuned with a gate voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا