ﻻ يوجد ملخص باللغة العربية
Let $X$ be a locally compact Hadamard space and $G$ be a totally disconnected group acting continuously, properly and cocompactly on $X$. We show that a closed subgroup of $G$ is amenable if and only if it is (topologically locally finite)-by-(virtually abelian). We are led to consider a set $bdfine X$ which is a refinement of the visual boundary $bd X$. For each $x in bdfine X$, the stabilizer $G_x$ is amenable.
In this paper we investigate finiteness properties of totally disconnected locally compact groups for general commutative rings $R$, in particular for $R = mathbb{Z}$ and $R= mathbb{Q}$. We show these properties satisfy many analogous results to the
In a 2004 article, Udo Baumgartner and George Willis used ideas from the structure theory of totally disconnected, locally compact groups to achieve a better understanding of the contraction group U_f associated with an automorphism f of such a group
Rational discrete cohomology and homology for a totally disconnected locally compact group $G$ is introduced and studied. The $mathrm{Hom}$-$otimes$ identities associated to the rational discrete bimodule $mathrm{Bi}(G)$ allow to introduce the notion
A connected, locally finite graph $Gamma$ is a Cayley--Abels graph for a totally disconnected, locally compact group $G$ if $G$ acts vertex-transitively with compact, open vertex stabilizers on $Gamma$. Define the minimal degree of $G$ as the minimal
It is well-known that the existence of more than two ends in the sense of J.R. Stallings for a finitely generated discrete group $G$ can be detected on the cohomology group $mathrm{H}^1(G,R[G])$, where $R$ is either a finite field, the ring of intege