ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive CP$^1$ theory from a microscopic model for doped antiferromagnets

198   0   0.0 ( 0 )
 نشر من قبل J\\\"urgen Falb
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A path-integral for the t-J model in two dimensions is constructed based on Dirac quantization, with an action found originally by Wiegmann (Phys. Rev. Lett. {bf 60}, 821 (1988); Nucl. Phys. B323, 311 (1989)). Concentrating on the low doping limit, we assume short range antiferromagnetic order of the spin degrees of freedom. Going over to a local spin quantization axis of the dopant fermions, that follows the spin degree of freedom, staggered CP$^1$ fields result and the constraint against double occupancy can be resolved. The staggered CP$^1$ fields are split into slow and fast modes, such that after a gradient expansion, and after integrating out the fast modes and the dopant fermions, a CP$^1$ field-theory with a massive gauge field is obtained that describes generically incommensurate coplanar magnetic structures, as discussed previously in the context of frustrated quantum antiferromagnets. Hence, the possibility of deconfined spinons is opened by doping a colinear antiferromagnet.



قيم البحث

اقرأ أيضاً

We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast t o antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case both the microscopic and the effective theory can be solved analytically. In this way the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.
218 - John Sous , Michael Pretko 2020
Recent theoretical research on tensor gauge theories led to the discovery of an exotic type of quasiparticles, dubbed fractons, that obey both charge and dipole conservation. Here we describe physical implementation of dipole conservation laws in rea listic systems. We show that fractons find a natural realization in hole-doped antiferromagnets. There, individual holes are largely immobile, while dipolar hole pairs move with ease. First, we demonstrate a broad parametric regime of fracton behavior in hole-doped two-dimensional Ising antiferromagnets viable through five orders in perturbation theory. We then specialize to the case of holes confined to one dimension in an otherwise two-dimensional antiferromagnetic background, which can be realized via the application of external fields in experiments, and prove ideal fracton behavior. We explicitly map the model onto a fracton Hamiltonian featuring conservation of dipole moment. Manifestations of fractonicity in these systems include gravitational clustering of holes. We also discuss diagnostics of fracton behavior, which we argue is borne out in existing experimental results.
We describe square lattice spin liquids which break time-reversal symmetry, while preserving translational symmetry. The states are distinguished by the manner in which they transform under mirror symmetries. All the states have non-zero scalar spin chirality, which implies the appearance of spontaneous orbital charge currents in the bulk (even in the insulator); but in some cases, orbital currents are non-zero only in a formulation with three orbitals per unit cell. The states are formulated using both the bosonic and fermionic spinon approaches. We describe states with $mathbb{Z}_2$ and U(1) bulk topological order, and the chiral spin liquid with semionic excitations. The chiral spin liquid has no orbital currents in the one-band formulation, but does have orbital currents in the three-band formulation. We discuss application to the cuprate superconductors, after postulating that the broken time-reversal and mirror symmetries persist into confining phases which may also break other symmetries. In particular, the broken symmetries of the chiral spin liquid could persist into the Neel state.
66 - D. Veberic 2000
Finite-temperature properties of weakly doped antiferromagnets as modeled by the two-dimensional t-J model and relevant to underdoped cuprates are investigated by numerical studies of small model systems at low doping. Two numerical methods are used: the worldline quantum Monte Carlo method with a loop cluster algorithm and the finite-temperature Lanczos method, yielding consistent results. Thermodynamic quantities: specific heat, entropy and spin susceptibility reveal a sizeable perturbation induced by holes introduced into a magnetic insulator, as well as a pronounced temperature dependence. The diamagnetic susceptibility introduced by coupling of the magnetic field to the orbital current reveals an anomalous temperature dependence, changing character from diamagnetic to paramagnetic at intermediate temperatures.
167 - A. Bohrdt , E. Demler , F. Grusdt 2021
Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory. Here we numerically identify long-lived rotational resonances at low doping, which directly reveal the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the super-exchange coupling. Rotational excitations are strongly suppressed in standard angle-resolved photo-emission (ARPES) spectra, but we propose a multi-photon rotational extension of ARPES where they have strong spectral weight. Our findings suggest that multi-photon spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا